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1 Executive Summary

The most common mode of transportation in the United States is personal

motor vehicles. The average American spends about 55 minutes driving every day

driving 29 miles per day (United States Department of Transportation, 2017),

totalling up to a yearly average of 20,075 minutes and 10,585 miles per driver and

totalling to 3.17 trillion vehicle miles traveled on US roads in 2022 (Carlier, 2023).

With this many vehicles and mileage on US roads, road damage is a significant

concern for both road and vehicle safety. Around one-third of the approximately

33,000 traffic-related deaths each year involve poor road quality as a factor in the

accident (Pothole.info, 2023). Furthermore, AAA found in 2021 that 1 in 10 drivers

sustained vehicle damage that required repairs after hitting potholes, totalling to

$26.5 billion in damages in 2021 (Edmonds, 2022). With this danger to driver and

vehicle safety and lack of repairs, there is a need for some type of assistance to

help drivers reduce accidents and damages, and for municipalities to track potholes

for further removal.

SmoothRide is an AI-powered portable application to solve this issue easily

and simply for drivers and municipalities. The objective of SmoothRide is to provide

an AI-powered laptop program to notify drivers of upcoming potholes in their lane,

then store the location of the potholes in a database that can be accessed at any

time in an easy-to-view map.

The driver will put their camera on the top-right of the windshield, giving a

clear view of the road while driving, and connect their camera to our program on a

laptop. While on the road, SmoothRide will be running our object detection AI

model on the camera to look for any upcoming potholes. If a pothole is detected in

the lane that the user sets, the driver will receive an auditory alert, and the pothole

will be sent to a database that can be viewed at any time via a live-updating

website. The user can manually add potholes found, delete potholes that were

falsely detected or are now removed, view an image of the pothole detected, and

generate a report of selected potholes’ location.
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2 Project Overview

2.1 Project Description

Driving is the primary means of transportation for most individuals in

the United States. As reported by the US Department of Transportation, 87%

of daily trips are done in private vehicles, and 91% of people commute to

work using private vehicles. On average, a single driver in the US spends 55

minutes on the road and drives an average of 29 miles per day, totalling up

to about 4 trillion miles driven in the US per year (United States Department

of Transportation, 2017). With all this driving, however, there is a concern

about road quality and damages on US roads. The US Department of

Transportation reports that approximately 80.95% of overall roads in the

United States were of acceptable quality in 2020, with a range of 94.60% in

Tennessee and 8.61% in Washington, DC (United States Department of

Transportation, 2020). However, in major cities, the quality is much smaller,

ranging from 64% in Los Angeles, California to 38% in Hartford, Connecticut

(Pothole.info, 2023). Given that approximately 80% of the US population

lives in urban areas, this lack of road quality represents a possible danger to

driver and vehicle safety (United States Census Bureau, 2023). There is a

present danger as well, as one third of the approximately 33,000 traffic

accidents with fatalities per year involve poor road conditions (Pothole.info,

2023). Furthermore, the American Automobile Association estimated in 2021

that potholes alone cost drivers $26.5 billion, with 1 in 10 drivers having

their vehicles damaged by potholes and needing an average repair bill of

$600.

The best solution to this problem would be for local and state

governments to actively repair potholes and road damage as they appear,

but individual repairs are slow and governments are weary of doing repairs
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due to the high cost. A survey done by the American Society of Civil

Engineers found that $786 billion would be needed in order to repair the

existing US roads and bridges, with $435 billion going to road repair alone.

However, in 2017, federal, state, and local governments only spent $177

billion, with a focus on operation and maintenance (American Society of Civil

Engineers, 2021). For response times by local governments in fixing

potholes and road damage, Pima County, Arizona can be used as a general

example. In Pima County, potholes are expected to be patched in 1 to 5

days for high speed and volume roads, and in 15 to 30 days for local roads.

However, in actual response time, the average number of days it took for a

pothole to be patched was at least 35 days, well over the estimated time for

both high speed and local roads (Pima County Department of Public Works,

n.d.). Therefore, it is clear the local and state governments do not see road

maintenance and repair as a priority, and that there is a present danger for

drivers regardless of government action.

Drivers themselves also have a potential solution; just notice the

potholes and avoid them. However, this “solution” is not feasible for all

drivers and is difficult to do successfully. For example, the Centers for

Disease Control and Prevention found that about 12.7% of the US driving

population has driven under the influence of some inhibiting substance

(Centers for Disease Control and Prevention, 2022), and NVISION Eye

Centers reports that about 2-3% of drivers have some vision impairment

that is below the legal minimum for driving (NVISION Eye Centers, 2022).

Even among drivers without impairments, reacting to potholes is difficult.

According to the National Highway Traffic Safety Administration, the average

reaction time while driving to a perceived threat is about 1.5 seconds in

noticing and reacting to a threat. (National Highway Traffic Safety

Administration, 2015). Traveling an average estimate 30 miles per hour, that

lets drivers notice and react to potholes that are more than 76 feet ahead of
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their vehicle. When up to 60 miles per hour, a common speed limit on US

highways, this increases to a minimum 132 feet ahead. While these numbers

may give the driver some space to react to potholes, the common advice in

the United States is to look about an eighth to a quarter of a mile ahead

while driving, or 660 feet to 1320 feet (Martin, 2022). This means that

potholes can appear suddenly for drivers, as they might not be clearly visible

from far away, and once they are noticed, may already be too close to a

vehicle to react in time. Furthermore, as previously stated, 1 in 10 drivers

on average still hit potholes despite this technique, meaning there is an

issue with its effectiveness in just relying on human senses.

Given the potential dangers of road damage and potholes, the lack of

work being done by governments to repair damage, and issues with human

reaction times in avoiding potholes, the team decided the best solution to

the problem would be to develop a mobile application to detect potholes and

notify drivers faster than they would notice potholes themselves. This app

would constantly watch the road, just like a driver would, but would be

focused on detecting when potholes appear using artificial intelligence. When

a pothole is spotted, the app would estimate its location on the road and if

the vehicle is in line to hit the pothole, potentially causing damages or an

accident. If the driver is in line to hit the pothole, the app would visually and

audibly notify the user that they are going to hit a pothole, and which side

the pothole is on. The difference between this app and the human senses

based technique is that the app’s AI will be trained to detect potholes at a

farther distance than human drivers, and will only be trained on detecting

potholes. By notifying the users well before they would spot a pothole

themselves and telling them where the pothole is, the app can improve

reaction times to potholes and help decrease the frequency of potholes being

hit, reducing accidents and damages. The app is also planned to include

extra features to notify drivers of upcoming areas with potholes. The app will
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collect the pothole times and locations as they are detected and upload them

to a global database. This database will then be used by the mobile app, in

conjunction with the app’s current location and direction, to notify users if

they are approaching areas with potholes. The database will also be used

with a website displaying a heatmap to show where potholes have been

found recently. These extra services will assist the driver in being more alert

for potholes, helping to improve driver safety, and will let local and state

departments of transportation have a live updating map of where potholes

have recently been found, giving them better opportunity to repair damages

without having to wait on calls or spend time looking for damages

themselves.

2.2 Motivations

2.2a Nicholas Gray

My motivation for this project comes from two sources: wanting to

work on a project related to autonomous vehicles to help my resume and

portfolio stand out and test my abilities in both creating and training a full

computer vision model and implementing it into a valuable product. I’ve

been working in autonomous vehicles and real-time computer vision projects

and jobs during my whole time at UCF, but I never had the opportunity to

lead an entire project myself. This motivated me to brainstorm different

autonomous vehicle-related projects this June for senior design to see what I

could make with my resources and connections. Initially, I wanted to work

on a project related to autonomous vehicles in off-road and degraded

conditions, but I soon realized that would require having an actual

autonomous vehicle, which would likely be out of scope for senior design.

However, while I was in Boston for the summer, I encountered New England

roads, which are covered in unfilled potholes.
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Thus, AI Pothole Detection was born. I wanted some way to catch the

potholes before I hit them, as I was too busy paying attention to the other

drivers around me and the confusing Boston road network. Thus, when I

returned home, I had the idea for the pothole detection project and a real

motivation to work on this idea specifically.

A side motivation for this project is that I want to write a publication

about this work by the end of the project. I am considering pursuing a Ph.D.

after graduation, but I want more publications and letters of

recommendation before applying to a prestigious university. I already have

one paper and one letter of recommendation, but if I have a project that

solves a unique problem and does better than any other existing AI, that

could be made into a publication that I could submit to a large conference

such as CVPR, NeurIPS, or ECCV.

2.2b Kyle Williams

I’ve been interested in AI development since it went mainstream a few

years ago, as I believe in its potential to process and simplify many jobs in

the next coming years. I’m looking to specialize in AI when I get my masters

at UCF. The idea behind AI is so sound; it takes a large swath of data and

goes through a large number of iterations to find trends to guide and

predict. So when I saw that there was a large number of AI projects in

Senior design, I was very excited. This is a year-long project that we’ll dive

deep into to get some real experience creating a multi-layered project – and

the project can be the subject which I see immense potential in!

But looking through the AI projects, truthfully I found many of them to

be lackluster. Many sponsors wanted to get in on the trend of using AI

without going through the effort to fit them to their companies, or they had

just a vague idea of what the technology even does or what its strengths
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are. But I really liked Nick’s proposal for AI Pothole Detection; a live image

recognition software that uses a convolutional neural network is something

I’d love to work on. And so I was extremely happy to get chosen for it!

In the past I’ve had the class Robot Vision, which focuses on AI, and

for my masters, I’m also in the class Computer Vision at this very moment.

Getting chosen for AI Pothole Detection, however, will mark the first time

that I commit to a large scale project using the technology, and the first time

I will be working with many technologies we’re using in the project. Working

with the car will definitely be a new experience for me, and it’ll definitely be

useful for my future work. I’m excited for the challenge!

I’m excited to work with a good group of students who all seem

interested in the project topic and completing the project. I have a few fears

after being in some lower-quality groups in the past, but I believe in the

group we have here. Our team contract is good, and I think having so many

members who are in the workforce right now will give our team a great

sense of momentum and an understanding of participation and deadlines.

There’s nothing worse than a team member who promises something then

doesn’t work on it and insists they don’t need help! We will have a difference

in the amount of experience utilizing this technology and similar

technologies, however. I’m glad we established early on that those who are

struggling can admit it day 1 with no shame, as that will allow our members

to grow and not get stuck feeling like they can’t ask for help.

2.2c Thomas Wallsmith

Creating civic infrastructure has always been an interesting concept to

me ever since playing SimCity 2000 on my moms old Dell computer. Civic

infrastructure has always been oddly fascinating, it's usually unnoticed but

plays such a big role in our lives. Working on this project is basically working



13

on a marriage between civil infrastructure and ML/AI applications, two of my

favorite things. I think creating a mobile app that can detect potholes would

provide a lot of value to the world, especially in the realm of driver safety. If

users can detect potholes before they drive into them, this system could

prevent motor vehicle damage and injury to the driver. Working on a project

that provides some level of public good is important to me, and makes

working on this project a good fit.

The most interesting part of the project to me is the stretch goals. I

think creating a database of potholes is an incredible public good, and can

lead to improvements in public infrastructure by being able to view every

single pothole in the city in real-time. Potholes could then be ordered by

recency, allowing for specific targeting of new/old potholes for repair. I hope

we make the database portion of the project a reality, but I am really excited

to learn more about AI and ML systems. My background largely comes from

designing and web apps, like web APIs and websites, so I hope I can learn

more about those areas and add unique value to the project. I feel like I

have a good grasp of resource-oriented APIs and want to use it to achieve

something cool, instead of doing gig work for startups.

Overall, my motivations for this project revolve around a love for civic

infrastructure and wanting to use what I’ve learned about API and system

design to create something useful and cool for communities. I think the

concept of having an AI capable of identifying potholes, combined with the

concept of storing those results in a database can result in a really powerful

system that could become a useful part of road quality infrastructure.

2.2d Mason Williams

I believe my motivations for this project have an arguably interesting

origin story. It goes all the way back to my first semester at the University of
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Central Florida. During my first semester, I decided to get involved in

extracurriculars and I joined the Robotics Club at UCF. While I was there I

decided to join a project titled AGV which stood for autonomous ground

vehicle. That project’s purpose was to build a robot that could traverse an

obstacle course that had a road with lanes to follow and obstacles to avoid,

including potholes. I was very excited to be on that team but I was also very

naive and quickly realized I was taking out a bigger bite than I could chew. I

was assigned the task of writing scripts that handled the pothole detection

using computer vision. Keep in mind this was the same semester I was

taking CS1 so my programming knowledge was on a very narrow scope and

I had a tough course load. I tried the best I could that semester but I did not

succeed in creating a working computer vision script that would detect

potholes. Due to that, the task had to be handed off to someone else and I

had to work on a different task for the remainder of a project. With that

being said, fast forward one semester where I was enrolled for the technical

elective “algorithms for machine learning”. Again, I found myself in a

position where I was attempting criteria that was far beyond the scope of my

knowledge. I started out doing alright in the class but as weeks went by, it

became more and more time consuming. It was requiring about 25 hours a

week just for the coursework alone, combining that with 3 other classes and

30 hours of working at a restaurant, I could not handle it all. I ended up

withdrawing from the course right when it started getting interesting. These

two failures are some of the regrets I held through my academic career up

until this point.

The reason I mentioned that preface was to display the fuel that drives

my motivation to complete this project. This project calls for a machine

learning model and some computer vision scripts to feed that model to

detect potholes on the road and alert the driver. The reason I ranked this in

my top 5 and requested to be swapped into this team was to give myself this
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challenge again to finally redeem myself in my last two semesters. From that

point in my life until now, I have gained a lot more discipline and skills to

learn more efficiently and work more productively. Not only that but I have

also expanded the scope of my programming skills and critical thinking. My

ability to get things done has multiplied exponentially since those faults and

I am ready to take on this project to prove that.

Aside from my academic regrets, I am motivated to work on this

project to create a functioning and practical driving aid. I have always been

interested in development for self driving and while the requirements for

that scale of project is too large for senior design, this project is a good

subset of that type of project. Alongside that I have always owned cars that

are low to the ground and are vulnerable to damage when they hit a

pothole. Even though I consider myself a safe driver, there are times when I

hadn’t noticed a pothole and caused serious damage to my car when I hit it.

I hope to make sure no more oil pans are damaged due to unnoticed

potholes. Besides those two points, potholes are dangerous and I am

motivated to minimize the driving risks they cause. According to an article

posted by Huesman, Jones, & Miles law firm, nearly one out of three car

accident fatalities are caused by road obstructions which are mostly

potholes. I am hopeful that our system will help notify drivers to minimize

the risk of road obstructions, which will ultimately result in reducing the

amount of driving fatalities.

2.2e Aaron Netterstrom

I was really excited to see that I was chosen to be a part of AI Pothole

Detection. For a long time, my goal was to work with cars and artificial

intelligence within them. Though this project doesn’t totally fit the

description because we will not be implementing our work into the car itself,

it does give a tiny look into how all of that can work. Ever since I took an
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introduction to AI class here at UCF, I have been very interested in learning

more about AI and how to use it in real world situations as well as learning

more about robot vision. I took an introductory class to robot vision a year

ago and I was drawn to how all of that worked. I have done a good amount

of research in my personal time when it comes to AI but mostly when it

comes to Machine Learning with how to do something over the computer

entirely, such as creating an AI and training it to play a videogame on the

computer. This will be the first project that I have worked on that will include

a real-world aspect.

I also enjoy the fact that this project has multiple parts to the project

including the vision portion as well as the calculations that have to be done

in order to see if the user will actually strike the pothole and send it to a

mobile application that can alert the user if this is going to happen. I have

done very little when it comes to mobile development and am also excited to

see how this is all going to piece together. For work I do a lot of scripting

when it comes to automating manual processes using Python, but it is

always kept locally on a machine, so having all of these intertwined parts is

going to really prepare me to be better at programming. I understand that

with all of these moving parts and my minimal experience with a project of

this size it will be quite difficult, but I am very excited that I got a project

that I am interested in, and I believe that I will learn a lot and have a lot of

fun.

2.2f Andrew Anchieta

Since I was in middle school, I have been very passionate about

software technologies and the development of tools that enable users to

improve the quality of their lives. My passion for programming began by

playing video games on a PSP (PlayStation Portable). I discovered the ability

to manipulate the software in the video game allowing me to obtain
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significant advantages through the use of cheat codes. This eventually led to

me wanting to exploit the software in the PSP to allow me to play all kinds of

games through the use of emulators and software that allowed me to bypass

any sort of limitations. 

Over the years, I have transitioned from wanting to exploit software on

my devices for personal gain over to creating or contributing to projects that

allow me to contribute to the world in a positive and meaningful way. It is

why I am excited and highly motivated to work with my Senior Design team

on the AI Pothole Detection system for our Capstone project. A tool that

serves as a driver’s second set of eyes on the road which allows them to

avoid potholes that can cause severe damage to their vehicles or cause a

collision possibly resulting in serious or fatal injuries. 

My motivation for wanting to create this AI Pothole Detection

system stems from the frustration I feel when driving over

massive potholes in roads that I’m not familiar with. Not to mention the

amount of money spent getting tires replaced and rims fixed as a result of

running over them. Monetary impacts aside, saving lives and preventing

accidents is the most important and motivating aspect of this project. 

With my previous programming experience with AI and machine

learning concepts I feel that this project will not only provide a

significant number of challenges but also bolster my skills in software

development overall. My experience with Java, JavaScript, React-Native, and

other development tools like Rest-API’s and mobile development software

will allow me to contribute to the team in developing a meaningful and

possible life-saving tool for communities.
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2.3 Societal Impact

2.3a Disability

This application is created to help warn drivers of potholes in the road

while they are driving and although the team is not focusing on people who

suffer from any sort of vision impairment or impairment in general, it will

definitely help people with these problems. People who suffer from some

sort of impairment while driving can struggle to notice something like a

pothole or other blemishes in the road while driving, especially with the fact

that the user needs to be constantly paying attention to everything

happening around you.

While using the application it is this group's goal to help users avoid

these potholes and give them enough warning to avoid it and miss the

chance of being in an accident. Groups who suffer from vision impairment

will be very much assisted in this sense who have a very hard time seeing

the small discontinuities in the road in front of them.

2.3b Assisting Local Governments

One of the largest stretch goals that this group is hoping to achieve is

to create a database of all of the logged potholes that could prove harmful if

they were struck. Being able to have a database of potholes that is

generated entirely by the users could help save a lot of time when it comes

to finding these manually and reporting them to their local governments and

departments of transportation in order to have the potholes repaired.

With this application the potholes will be automatically flagged and

their locations will be stored seamlessly. This information will then prove to

be very helpful to streamline the location and fixing of them.
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2.4 Issues

2.4a Legal

The first legal issue the app has is location data. It was originally

believed that the stretch goals would not have to record locations of users to

record the locations of potholes. This, however, is incorrect. It is useful to

link a pothole to a specific user so that the user can’t re-record seeing

multiple potholes or abuse the app’s systems, which an anonymous user

would have to do. The app does not have to record anything other than the

location of the user. This means that it will keep the data anonymous and

not link any location data to any personal information in any capacity. For

the app to be operational in America and Europe, it will adhere to the privacy

policies of America and Europe as guidelines for the app to follow:

In America, there isn’t currently a federal law that regulates the use,

sharing, or collection of geolocation data. Legally, the app can record users'

data in many states with little issue. There are a number of bills that dictate

the uses of location data, but the bills are less stringent than the European

location data bills. The app will follow the guidelines of the GPS act, upheld

by California, Florida, Hawaii, Louisiana, Minnesota, New Hampshire and

Virginia. The GPS act primarily prohibits businesses from disclosing

geographical tracking data about its customers to others without the

customers' permission. The app can follow the European features of the bill

and have no legal issue in America.

In Europe, these are the key features that location data has to be

upheld to:

● Location data should only be used when it is anonymized (i.e. it cannot

be associated with any particular individual).
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The app will have anonymized data.

● If it's not anonymized, the user has to give their consent for their

location data to be used and accessed by this app. Also, the user must

be able to withdraw their consent at any time.

The previous point is not applicable because the system will be keeping the

data anonymous.

● The service provider must inform the user what location data will be

collected and processed.

There will be a legal list that fulfills this requirement, and users will be able

to opt out of having their location tracked. If they do not have their location

tracked, the pothole data they collect will not be uploaded to a database.

● Location data should only be used for a specific reason, and only for

the duration necessary for the purpose.

The app requires the use of this data to create a useful map of potholes as

long as a user is driving.

The app will implement these features. It’s required by both the law

and Apple’s privacy policy. The policy states: “Apps can only use location

services when it is directly relevant to their services.” and also specifies “If

your app uses location services, be sure to explain the purpose in your app.

The app will include a privacy policy that describes how the app will be

utilized such as this one:

“You consent to AI Pothole Detector to use location services for the

purposes of recording pothole data for other customers.”

Another legal issue the app has to deal with is liability in distracting

drivers. The app is meant to be primarily used by drivers on the road, and it
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will notify these drivers if there is an upcoming pothole. To determine if the

app makers can be held legally liable in this situation, one can check

precedent:

● Maynard v. Snapchat: The Georgia Court of Appeals concluded that

Snapchat wasn’t liable for an accident that happened when a driver

was traveling at high speeds and using the app’s “Speed Filter.” This

feature captures the speed at which the phone is traveling and allows

users to superimpose it on their “Snaps.”

This case is similar to applicable to the app. However, the app will encourage

being used while driving, instead of only being an option. The following is

the requirements to bring a claim to the court over a distracted driving

incident involving a smartphone:

● HQ states: “For success with a claim, the technology used must have

led to the incident, caused injury and been enough of a distraction to

take responsibility from the driver at least in part. This means that the

duty of the tech company involved was to provide a device that was

created without the express purpose of distracting a person from his or

her primary focus of attention. With bright or garish graphics, these

items may divert the awareness of anyone close enough to the item.”

(HG.Org, 2023)

The app must not distract drivers from the road with very bright or garish

graphics, which is important for the design of the app. In addition, the app

has a disclaimer that reminds drivers to keep their eyes on the road.

Pokèmon Go implements a system when it detects that drivers are driving to

remind drivers to keep their eyes on the road; the AI Pothole Detection app

will as well. Without a proper disclaimer drivers must agree to, the app may

have more liability in the case of an accident by the distraction of the app.

With a proper disclaimer, liability would be lessened.
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Additionally, the app may have liability in the case of a false positive or

false negative. The AI model is not good enough to catch a pothole every

single time, or to never misidentify a pothole as something else. So if a user

ran over a pothole without being notified by the app, they may feel like the

app has liability over not noticing the pothole on the road. The app will

stress that the predictions cannot accurately identify every single pothole on

the road.

Also, if the distraction of the app’s notification appears when there is

no pothole to be seen, the app may be liable if a user is startled, and it

causes them to crash. The app will also stress that false positives can occur,

and the app’s notification may go off with no pothole in the road. If the app

projects incorrect confidence in their model, it’s more likely the app will be

held liable for incorrect results. There will be multiple layers of disclaimers

about the app’s inaccuracies, similar to how ChatGPT has labels about the

misinformation its AI network provides.

2.4b Ethical

The app is attempting to create a robust dataset of current potholes

around the whole world. There are some ethical issues related to how the

app is tracking the data. Users may feel a breach in privacy with the app

accessing location data, but the recording of this data is completely optional.

Additionally, the app is not tracking individual user’s locations, only the

potholes that they have seen. So, the data can’t even be used as a roadmap

for a user’s location. The privacy implications of this are more fully covered

in the privacy section.

Identifying users about potholes with the app is an opt-in service with

a clear and direct way of notifying which information the app is recording

and which information the app is not. Having a database of potholes is
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crucial to this project, and unproblematic as long as the users understand

that the app is tracking the potholes the application identifies.

2.2c Privacy

There are a handful of privacy issues to consider with this app. The

app is utilizing location data, so it’s critical for the app to handle the data

with caution. In addition, the app uses the camera, which may lead to some

privacy concerns. Finally, the app must deal with unnecessary permissions

that the app may or may not need.

Location Data

Location data is essential for the app. The app will take down the

location of any pothole data it finds, along with the specific user ID who

found it. This requires the implementation of a database. The app is not

recording any user data along with the location data, so the app will be

unable to identify the specific user that the app records the data from. There

are potential privacy breaches in recording exact locations of a single user

across time. To avoid these, the app will take precautions against the

identification of users. One precaution is a self-deleting database. The

database will not stockpile pothole information that is identified. It will

instead keep current and up to date with the potholes located in the world.

The self deleting database will remove any potholes that have not been

reconfirmed to exist within a couple weeks. For a pothole to remain

identified on the map, it should have been identified recently.

When a different user identifies the same pothole another user found,

the database will switch the user who confirmed the pothole’s existence from

the first user to the most recent user. The database will not keep

unnecessary information about certain user’s locations on many dates in the

past.
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If needed, to prevent abuse of the database, a “potholes identified”

number may be added to each user’s data. This is so a user cannot abuse

the measures the app has taken with privacy to abuse the system. If a

malicious agent wanted to, they could identify the same pothole multiple

times with multiple accounts to confirm a pothole that doesn’t exist. This will

be avoided by noticing if a user has reconfirmed the same pothole multiple

times in a short span of time. In this situation, the app could still detect

potholes, but the user’s information would not be added to the database that

has been made.

The user is not required to enable access to location services. The

app’s function works entirely fine if the user does not record its data to a

database. If a user opts out, then that no data would be recorded for other

users to see the same pothole on the map pre-identified. The app will

provide the user with data about what it’s using location services for, which

is already required in the legal section. If the user sees this and would prefer

not to have the app track them, then they have the option to not allow

location services. All functions of the app will be available.

Camera Access

The app requires a camera. When a user starts the app for the first

time, the app will issue a popup that asks for camera access from the phone.

If the user allows it, they will be taken to the home screen which will

prominently feature the camera on screen. If they do not allow camera

access, the screen will be a black screen that tells the user they must allow

camera data. The camera data that the app takes will be fed into the AI

model, and if a pothole is identified, the AI data would be put on the screen

as quickly as it takes the model to process the image.

Importantly, the app will not record any camera data in any capacity.

The app will feed the current camera into the AI model and will not save any



25

camera data beyond that.. Because of this, the list of privacy issues for

camera use is slim. There’s no way to access any data that’s recorded with

the camera, so there’s no privacy concerns the group must take. The app

will also provide a disclaimer about the camera data’s use.

Other Considerations

An important aspect of privacy with most apps is the login and user

encryption. Usually, an app will utilize usernames and passwords that must

be taken care of and the access of these is a privacy concern. There is no

consideration with this app because there will be no login. The app will utilize

the information of which device is sending the data, but there’s no way for a

malicious agent to access specific user information because the app will not

be asking for it.

The app will have to protect the data that it does store. This data is a

user’s key and the potholes they have identified. The app must not allow

malicious agents to access the database. It will have a secure server that

prevents malicious attacks, and will have good measures against bots

attempting to abuse the database. This is a list of some of the things that

Flutter can provide the mobile app that will increase privacy:

Secure Storage of Data

● Flutter Encrypt allows the app to make the data encrypted; this is an

important product for all databases

Secure Code Practices

● Testing and understanding the consequences of every line of code

written and every point the user is given access to.

Third Party Library Management
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● The app will be using third party software to implement the AI model.

These libraries will be checked for malicious code and the app will only

use libraries others have utilized.

3 Project Characterization

3.1 Goals Overview

The overall goal of AI Pothole Detection is to create an application that

helps drivers avoid potholes quickly and safely, as well as assist local

municipalities in collecting data about where potholes are in their local area.

The user would use the app as a driving assistant, letting them focus more

on the road and not having to pay as much attention to avoiding potholes.

The program is meant to be easy to set up and launch, requiring little setup

from the user beyond just opening the app and setting up the phone with a

clear view of the road. The program should communicate pothole location

clearly and quickly, and only when the pothole is an actual concern; this

means that focus needs to be put on accurate detection and location

estimation in order to not have the drive maneuver when they do not need

to.

For the extra components of a database, advanced alert system, and

map, the goal is to have these features assist in communicating further

information to drivers and non-drivers about local road conditions. The app

would communicate with the database to upload the potholes it detects at

what time and receive any notification about upcoming potholes based on

the previously logged potholes. The database would also be used to create a

usable heatmap that shows where potholes have been frequently found

recently, giving drivers and local governments usable information on where

to avoid and where to repair roads, respectively.
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We were unable to reach the stretch goal of having an advanced alert

system but were able to develop a database that holds the positions of the

potholes. Due to dropping the mobile application and transitioning into

primarily a laptop program, the advanced alert system was not deemed to

be a priority. However, the heatmap was transitioned into being a more full

mapping application, with the ability to add, remove, and download reports

about potholes, instead of just only being able to view them on a map.

3.2 User Stories

The following user stories were created as the main guide and focus for what

development should focus on. There was a focus on giving priority to the

end-user (drivers), while also giving some focus so as to make later

development easier.

● As a driver, I want to get on the road quickly so I can get to where I

need to go.

● As a driver, I don’t want to be spooked by sudden load noises, as that

will make me possibly jerk the wheel.

● As a person, I want my personal information safe and not randomly

logged, as what would be the need for a pothole detection app to know

who I am?

● As a developer, I want to be able to iterate quickly and add new

features, as that will give drivers more information.

● As a government worker, I want to be able to drive around a large

area to collect potholes, them view them later on a large map.

● As a government worker, I want to be able to collect data on the

potholes collected and know where they are so that they can be

patched at a later time.

● As a citizen, I want to be able to view where potholes are in my local

community, so that I may avoid them and better understand how well
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my government is dealing with the issue.

4 Requirements

4.1 General Requirements

● Minimal setup difficulty

○ Users should not have to spend more than 5 minutes setting up

the app for use. While there will be some needed setup time in

order to set up a phone stand for the phone to watch the road,

starting the app should be as simple as opening the app itself.

● Use minimal hardware resources

○ The system should have to use as few pieces of additional

hardware as possible and use what hardware it is using as

sparingly as possible. Here, this means that the app needs to not

be heavily demanding on the phone hardware, especially for

older devices.

● Fast and Communicative

○ Notifying users needs to happen as quickly as possible and only

when there is importance in communicating an approaching

pothole. Potholes that won’t be hit should be ignored and

potholes need to be verified in some fashion with consecutive

detections.

○ Alerts also need to be non-startling, so as to not frighten the

driver and cause them to drive unsafely.

● Protect User Privacy

○ The app and related systems should not log any personal or

identifying information. If any information needing an ID is

logged, the log should be anonymized and not traceable back to
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a specific device or person.

● Well documented

○ All code and documentation should be easily readable and

well-documented. AI related work needs to be tracked and

training results recorded, and mobile app development should

include clear code comments, modular software design, and

external diagrams and documentation of app structure.

● Feature Expandable

○ The app and related features should be constructed to allow for

later iteration and expansion, especially for the later stretch

goals that will add further features.

4.2 AI Requirements

● Detects Pothole

○ The model must detect potholes specifically. While other road

damage could be included later, the specific focus on the model

is in detecting potholes.

● Accurate Detection

○ The pothole detection model needs to be able to detect potholes

accurately and consistently. If it cannot do either of these, then

the model is performing poorly.

● Fast on Edge Hardware

○ The model needs to be able to run on portable hardware in real

time. Given the diversity of smartphone hardware, this can be a

serious limitation. Focus needs to be put on selecting a model

with a design on real-time performance and high accuracy

regardless.

● Work in Any Environment
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○ A pothole detection model cannot work in only one area. If it

only worked in certain environments (for example, higher end

US neighborhoods where there are rarely any potholes), then the

model would have a clear bias that would not assist all users.

○ The dataset the model is trained should be diverse in location

and road quality. This will both help reduce bias and make the

model more robust.

● Verified Detection

○ The model must include some kind of verification system to

determine that the detection is reliable. This will likely be a

threshold on each detected pothole to only include confident

detections.

○ In order to ensure potholes are properly identified as they come

closer to the vehicle, a tracking algorithm will be needed to

check that detected potholes are real. This will also be used to

verify their estimated location and if they are in line to be hit by

the vehicle.

● Small Storage Size

○ The model should have a small storage size in order to minimize

the installation size on the smartphone. This will include

choosing smaller models and performing optimizations to shrink

model size further.

● Accurate Benchmarking

○ In order to compare the performance of different AI models, a

standard set of measurable benchmarks to select the best

performing model.

○ The benchmarks must be relevant to the type of AI model being

used, depending on if classification, detection, or segmentation

models are used.
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● Training Data

○ The training data, on top of being diverse, must be sizable

enough to allow for fine-tuning and, if necessary, raw training of

any AI model. Larger datasets will allow for more robust training.

● Portable to Mobile

○ Any model must be able to be ported to the mobile app

regardless of the framework used. This means the model should

not be limited to running only on Android or IOS.

4.3 Mobile Requirements

● At Least Three Pages

○ The app should at least include a settings page for user

adjustments, an information page to give users a tutorial and

further information about the app, and a main page that will

show the phone’s view and display alerts.

● Include Tutorial

○ The app should include a tutorial page or interactive tutorial to

teach the user how the app works and how it should be set up.

● Camera Permissions

○ In order to run any AI model, the mobile app will need

permissions to access the phone camera. This access will be

used while the app is open to watch the road in real time for the

AI model.

● Understandable Alerts

○ Visual alerts must be displayed on the mobile application with

clarity such that the driver should be able to understand where

the pothole is without looking directly at the screen.
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○ Auditory alerts must clearly state the pothole location in an

understandable and calm voice to minimize time needed to

understand the message and to not scare drivers.

● Adjustable Settings

○ The app should have a settings page that lets the driver adjust

the alert volume and visual indicator opacity to user preference

and accessibility needs.

● Integrate with AI Model

○ The mobile app should be able to integrate with an AI model

directly, without the need for a cloud API. This is required due to

the potential latency costs for using a cloud API in real-time,and

the potential for low quality or no data reception.

● Fast and Stable Performance

○ The app overall must not be slow, laggy, or possess any bugs

that can cause a crash during operation.

○ The mobile app and AI model together must not cause the app

to run slower than real-time. At a frame rate of 5 FPS, the app

and model should not take longer than 200 milliseconds to

process an image from the camera for detecting if it has a

pothole.

4.4 Laptop Program Requirements

● At Least Three Pages

○ The app should at least include a settings page for user

adjustments, a mapping page for displaying where the potholes

are on a map, and a main page that will show the phone’s view

and display alerts.

● Camera Access
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○ In order to run any AI model, the program will need t o be able

to access a camera or video stream of some kind. This access

will be used while the app is open to watch the road in real time

for the AI model.

● Understandable Alerts

○ Visual alerts must be displayed on the mobile application with

clarity such that the driver should be able to understand where

the pothole is without looking directly at the screen.

○ Auditory alerts must clearly state the pothole location in an

understandable and calm voice to minimize time needed to

understand the message and to not scare drivers.

● Adjustable Settings

○ The app should have a settings page that lets the driver adjust

the alert volume and visual indicator opacity to user preference

and accessibility needs.

● Integrate with AI Model

○ The mobile app should be able to integrate with an AI model

directly, without the need for a cloud API. This is required due to

the potential latency costs for using a cloud API in real-time,and

the potential for low quality or no data reception.

● Fast and Stable Performance

○ The app overall must not be slow, laggy, or possess any bugs

that can cause a crash during operation.

○ The laptop program app and AI model together must not cause

the app to run slower than real-time. At a frame rate of 5 FPS,

the app and model should not take longer than 200 milliseconds

to process an image from the camera for detecting if it has a

pothole.
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4.5 Miscellaneous Requirements

4.45a General Requirements

● Additive Improvements

○ The stretch goals should be additions to the app, not core

requirements. If they are required in order to make the app run

at its core (live pothole detection), then they are not stretch

goals.

● Provide Useful Addition

○ All stretch goals should provide a change that improves either

the experience for drivers or adds experiences that widen the

potential user base to non-drivers. However, stretch goals should

be focused with drivers in mind.

● Equal Development

○ Stretch goal developments should be given the same effort as

the core application is given. If a stretch goal is chosen to be

developed, then it is confirmed to be part of the application.

4.5b Database Requirements

● Store Relevant Pothole Information

○ The database needs to be able to store pothole locations and the

time the potholes were found.

● Accessible by Outside Applications

○ The database needs to be accessible by the mobile app and

heatmap website to allow for uploading and downloading

relevant data for their use cases.

● Uptime

○ The database needs to have constant uptime with no crashes or

significant downtime.
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○ If there is downtime a system must be set up in order to allow

for any missed uploaded potholes to be added to the database.

● Fast Updates and Syncing

○ The database should update quickly when new uploads are

added to the database and any exports of the table onto mobile

devices should sync with the database to provide users with

accurate tables.

● Database Size Management System

○ In order to minimize the storage size of the database, potholes

in nearby locations should be clustered together as an average

location and a count of the number of potholes in that location.

4.5d Map Requirements

● Web Accessible

○ The heatmap should be accessible using a website or web

application to make access universal and not require any

installation.

● Desktop and Mobile Friendly

○ The heatmap should be accessible on both desktop and mobile

devices to allow any user to access the heatmap, no matter what

device they use.

● Accurate with Database

○ The heatmap should show the data as the database is currently

reporting. The heatmap system should build directly from the

live database and use the most up to date data.

● Shows Local Area

○ The heatmap should center around the user’s local area so that

the map does not start at a location that is not relevant to the
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user. This can be done without violating identity privacy concerns

by using IP addresses.

● Accessibility

○ The heatmap should have accessibility features that allow any

user to use the heatmap system without impairment.

● Relate Locations to Road Maps

○ The heatmap should report directly where potholes are and when

they were last reported while showing what roads they are on.

This gives users the most useful information without providing

unneeded information.

5 Concept of Operations

Based on the general requirements, the project was originally

envisioned as a mobile application that drivers use to notify them of

incoming potholes automatically before they notice themselves, giving them

more time to move out of the way of the pothole. There are two major

components to the application: the pothole detection AI and the user

notification system. The pothole detection AI will use the smartphone’s

existing processor and camera to watch the road and detect any incoming

potholes in real time. This fulfills the first two general requirements of using

very few hardware resources, as the application only uses a driver’s

smartphone, and requires minimal setup, as the user only needs to place the

smartphone in a dashcam view. However, some may note that making the

driver set up a smartphone in a dashcam view is not a minimal setup, as it

forces drivers to have extra hardware to set up the phone to the correct

position in the first place. However, it has been decided that, given the need

for there to be some camera setup and the requirement of minimizing extra

hardware, making the driver have a phone stand is not a great

inconvenience compared to other alternatives, such as having a dedicated
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device with additional hardware for this task. Figure 5.1 shows the overall

concept of operations for the phone’s needed field of view and operation

viewpoint from the user.

For notifying the user, it is envisioned that the system will have some

visual and auditory alert to notify drivers immediately when a pothole is

detected, but only when the driver is on a path to hit the pothole. This extra

threshold for notification exists because notifying the user of every pothole

may cause unsafe driving behavior or lead to the driver ignoring the

warnings, defeating the purpose of the application. By using a simple visual

or auditory cue, the driver should be able to understand which side the

pothole is on more quickly, and knowing that they are on a path to hit it,

make the necessary actions to avoid it. There is a concern, however, that by

making the driver trust the system and not see the potholes themselves,

they will oversteer, which may cause greater harm than just hitting the

pothole. For this scenario, it is also envisioned to have a highlight around the

detected pothole so that the driver can understand where it is and thus

make a safe maneuver to avoid it.

For the current version of the program, there is now a laptop

application instead of a mobile application. However, the vision of the
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program is very similar to the mobile application. The driver will set up

either their smartphone or a camera of some kind inside the vehicle, which is

connected to a laptop or other higher power machine. The driver then beings

driving, and there is a laptop program that operates in a similar fashion to

the original mobile application.

For the stretch goals, it is envisioned that the mobile app will log the

detected potholes onto a cloud database, using the phone’s current GPS

coordinates and timestamp to log the potholes detected. This database will

then process and group the potholes together to minimize storage size and

to simplify the two main stretch goals: an advanced alert system and a

viewable heatmap. The advanced alert system is envisioned to operate in a

similar manner to the live alerts, where there will be a visual and auditory

alert of the driver approaching an area with potholes. However, unlike the

live alerts, this alert will appear on the top, and will only indicate that

potholes are approaching. In order to retrieve these potholes, the database

would be wrapped with a back-end API that is called on some set interval

with a phone’s current direction and location. The API would take the

direction and location, query the database for any nearby potholes, and

return either a location if the driver is approaching potholes or no value if

not. These potholes in the database would have an expiration date if they

are not detected in some time. This would be done in order to remove

potholes that have been patched by local governments, although this may

also occur on local roads rarely traveled.

For the map, the concept of operation includes a website similar to

Google Maps or OpenStreetView with map markers of where potholes have

been recorded in the database. This map would be accessible on both

desktop and mobile browsers and would initially center based on the user’s

IP address, as it is expected most users would want to check their local area.

The map would allow for moving and zooming on the map and would show



39

the specific locations of potholes when clicked on or hovered over with a

mouse. It is also envisioned that there would be extra controls for the map

related to filtering potholes based on dates to see where potholes have been

recently found. This feature would be of extra use to local governments, as

they could use this filter to find where potholes have been recently found

and need to be repaired. Finally, there is envisioned some ability to add and

remove potholes from the map for government workers, allowing them to

maintain the database directly through the map, instead of on the database

itself.

6 Division of Labor

6.1 Timeline of Roles

Stage 1 (September 2023 - December 2023): Research and Making AI

● AI Modeling and Data: Nicholas Gray, Mason Williams

● AI Modeling: Kyle Williams

● AI Data: Thomas Wallsmith

● Mobile Dev: Aaron Netterstrom, Andrew Anchieta

Stage 2 (September 2023 - January 2024): Mobile App Development and

Integration:

● AI Modeling and Data: Nicholas Gray, Kyle Williams, Thomas Wallsmith

● Mobile Dev: Aaron Netterstrom, Andrew Anchieta, Mason Williams

Stage 3 (February 2024): Database Creation and Management

● AI Development: Nicholas Gray, Kyle Williams

● Database Setup: Thomas Wallsmith

● Rest API: Aaron Netterstrom, Andrew Anchieta

● Version Control and Documentation: Mason Williams
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Stage 4 (February 2024 - March 2024): Mapping Integration other Stretch

Goals

● Website: Mason Williams

● Mobile Development: Andrew Anchieta

● AI Development: Nicholas Gray

● Rest API: Everyone Else

Stage 5 (FMarch 2024 - April 2024): Emergency Fixes

● AI and Laptop Program Development: Nicholas Gray

● Website: Mason Williams, Thomas Wallsmith

● Rest API: Everyone Else

6.2 Individual Contribution

6.2a Nicholas Gray

My main responsibilities were related to being project manager and

being the head of the AI development team. I worked on exploring the

problem space and creating the problem definitions and requirements that

would guide the development of the project. I researched what previous

works have done in terms of dataset, model selection, and setup for actual

use. I also researched the pros and cons for the different types of models

there are for pothole detection, and the different options in libraries for

developing the models.

Besides research, I explored the existing pothole datasets and created

our own pothole dataset by merging some previously found datasets. I

researched and set up the data storage systems for training our AI models

and oversaw distributing the workload of merging the datasets amongst the

AI team. I also provided information to the team on how computer vision

and artificial intelligence works in general and in terms of pothole detection.
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For the mobile team, I assisted in finding relevant libraries to integrate

the produced AI models into the mobile application. I researched and listed

libraries for Flutter and React Native that should be able to work with any

model exported from PyTorch or TensorFlow. I also gave my thoughts on the

app design, focusing on how to maximize understanding in the initial user

tutorial so that they would not have to reference the tutorial again later. My

idea was to have an interactive tutorial that would show the user directly

how the app worked and what each page in the app did, with the information

page allowing for the tutorial to be run again if need be.

I did all of the development for the laptop program. I trained both the

MobileNetV2 and the YOLOv8 models we used in the mobile application and

the laptop program, respectively. For the laptop program, I wrote it entirely

myself, and set up integration for both the smartphone camera stream and

webcam. I researched and developed the lane detection and setting

systems, and developed the laptop mapping program myself. I also

researched the available reverse geocoding libraries for both the laptop

program and the website front-end.

Finally, I was the SCRUM master for the team and the one who tracked

deadlines. I managed the Jira board, the team timeline, and made sure the

team had scheduled for the demo and final committee.

6.2b Kyle Williams

The main part in this project I worked on is related to all aspects of

the AI model and its execution. I was one of the two members in the AI

development team, and I retrieved databases we trained the model on, I

combined the datasets, and filtered the datasets for images with potholes in

them. I trained AI models on the dataset, including YOLOv8, YOLOv5, and

Roboflow 3.0 models, as well as writing the code for a Pytorch model. I also
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researched and decided which models are worth training for the sake of

comparison, researched which library most efficiently runs the AI models for

integration into Flutter, and assisted a little with the mobile pipeline. I

trained my models using Jupyter Notebook, and applied preprocessing to the

dataset before training models with differing number of epochs to find the

best model.

I also applied varying augmentations, such as crop, blur, noise,

rotations, exposure, and hue alterations. I uploaded my models online, to

Roboflow and the weights to Drive, for ease of access for my team.

Comparing them, I found the best model was using YOLOv8, so we used

YOLOv8. I tested the models against one another in live testing, both testing

the models on videos of potholes in dashcam position using Ultralytics, and

bringing my laptop in the car to potholes around UCF using a hotspot to

have it identify them.

I attended every single meeting except one I missed for a cruise,

created the CDR slides, and I was a core contributor to many of the idea

implementations for the app and laptop program, such as the pothole’s

expiry from the database, grouping of close potholes together, and a delay

on the identification from the app. I really cared about this project and

making it useful and successful, and I think I crushed my half of the project.

6.2c Thomas Wallsmith

Across the project’s lifetime, I mainly had two roles. At first, I helped

with data collection and structuring the project. I looked through some data

sources and filtered based on the given criteria.

Soon after, I moved to API and Database design. I designed the

underlying database tables and resources based on the needs of the group.

This required reaching out to all teams and figuring out something that
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worked for everyone. After designing the Database, I built the API to interact

with it, allowing for coordinates to be stored using PostGIS. I also managed

deployments and aided in building the web app. I set up the deployment

with Render and aided with the web app deployment as well.

6.2d Mason Williams

My role throughout this project changed multiple times due to

restrictions and the needed workload of certain teams. The first role I took

on which didn’t really change was the role of being project co-lead to help

Nick with administration and infrastructure. That role entailed keeping the

mobile team organized and setting up meetings and ensuring everyone was

aware of important dates. As well as keeping the jira workflow moving.

Aside from that role, I was responsible for designing the mobile

application architecture. I was supposed to be responsible for the model

integration on mobile but when I created my dev environment and

attempted to test the foundational app, I was unable to simulate the app

and properly test my changes. Therefore I was only responsible for just the

design but not any implementation to do work tool restrictions.

Due to me not being able to work on mobile anymore, I then switched

to the client side portion of the web application. I was responsible for styling

the front-end and ensuring the google maps plugin was working properly as

well as all the export features required.

6.2e Aaron Netherstrom

For this project I will be entirely focusing on mobile application

development. I will be working alongside Andy and Mason to design and

create the mobile application as well as implementing the machine learning

model into it. I have never worked on an application before and that is part
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of the reason I had picked this role. As I mentioned above, I have worked

with machine learning as well as computer vision before but other students

in my group really wanted to explore this part of the project and I wanted to

have everyone learn a lot through this project. If I chose to be on the team

that focused on the model, I feel like I would not have been able to broaden

my horizon when it comes to software development. I feel like it is much

more important to be exposed to all aspects of software development

including the creation of the model, the mobile development, and the

web-based development.

With mobile development being the only aspect of the project that I

have next to zero experience in, I thought I would get the most out of this

class by being a part of this team and being a more well-rounded

programmer. For the first weeks of this project I conducted research into

multiple different types of application development frameworks our team

could use and ultimately, we could choose the best one that will work for our

project. After this I was able to create a mockup skeleton of the application

in Figma and then set up the framework on my personal system.

I ran into multiple problems with how my machine is set up and I had

to create a new local user in order to get it all functioning properly. Now I

am currently working on setting up a skeleton of the application. Once the

skeleton is complete, this will allow the entire mobile team to work on

separate pages of the application at the same time with minimal conflicts

when pushing to main.

After helping with mobile development I moved towards helping setup

and manage the database. This consisted of helping plan and lay out the

foundation for the database with what we are going to store and helping

problem solve on how we would solve certain problems when it came to
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using endpoints in terms of creating/incrementing new potholes and the

bounding box endpoint to return potholes in a given area.

I also created the initial commit of the front-end web application that

displayed a map using the Google Maps API. I was able to obtain a API key

for the google platform as well as setup the custom map and create a base

for the web application to flourish on. I was able to implement the map on

the website as well as add very basic styling to help view the web application

better.

Finally, after the application had been completed I researched the

easiest ways to deploy our project because we were not using any sort of

framework for the web application. I came to the conclusion of using

Amazon’s AWS Amplify which allows for very simple “drag and drop”

deployment of our web application.

6.2f Andrew Anchieta

In this project, my main focus will be on mobile application

development. Since I have had experience with mobile development with

React-Native, my team and I decided I would be one of the best candidates

for the development of the mobile application. As a result, the project group

is split up into two main groups – AI and Mobile. Being on the mobile team, I

have made contributions to the project related to the mobile application.

The very first thing I had done was fixing the design of the mobile

application after the basic backbone structure was created by another team

member on Figma. Since the design of the app was mainly focused on the

features, I focused on making the design “pretty”. I added more colors,

icons, and blur layers in the user interface while making sure the warnings

were brightly colored to catch the driver’s attention and the text font and

size remained consistent throughout the app.
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The next contribution I had done was getting Flutter SDK Framework

and libraries installed on my local machine. While it was not an easy

process, eventually after getting all the dependencies like Android Studio

and CocoaPods installed, Flutter worked like a well-oiled machine. Running

the command “flutter create ai_pothole_mobile '' into the terminal on my

preferred directory location created the basic app needed to get the mobile

application started. I tested the basic app on an iOS simulator using Xcode

and on an Android emulator using Android Studio.

The next step after creating the app was having it pushed onto our

GitHub repo. After setting up each individual group members’ Flutter

environment for their local machine, between the mobile development group

I, we cloned the app on our local machines, and using the Flutter app I

created, I copied the contents as a subfolder of the main cloned GitHub

repo, committed changes, and pushed it to our repo. We set new branches

for each of the members of the mobile development team for app

development. This marks the beginning of mobile app development.

My goal for the app development is to have a usable product as close,

if not better, to the original design as possible. While developing the app

pages is assigned for another team member, I am trying to find the most

efficient and easiest ways to implement features to the app, like a navigation

bar and camera view. Other ways I can contribute to the app development is

making sure the design of the user interface is as close to the original and as

easy to use and read as possible.

While my main focus is on mobile application development, I will find

other ways to contribute to the project. Since I also have experience in

backend/APIs and testing them, I will deal with that area if it ever comes up.
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7 AI Research

As per the AI model requirements, the AI model needs to run quickly

and use as few hardware resources as possible. As the model will be in a

vehicle environment, the AI model selected needs to be real-time, which

means that the model needs to be able to perform and complete a task

within a specific time interval (FutureLearn, n.d.), which in computer vision

AI is usually less than a second. Due to these requirements, consideration

had to be put into the programming language, deep learning library, model

architecture to use, and the sensors that will be used to support the mobile

app in detecting potholes.

7.1 Programming Language

There are multiple different programming languages that are used in

AI and computer vision research and development, each with their own

focuses and specialties in development, with different levels of support for

artificial intelligence development. Below are four popular languages for AI

development, going from most frequently to least frequently used in

industry.

7.1a Python

Python, a high-level general purpose programming language was

created on February 20th, 1991 with a focus on being Pythonic, or in general

terms, readable and easy to program (Kuhlman, 2011). Python is one of the

most popular programming languages, with over 48.07% of respondents in

Stack Overflow’s 2022 survey using the language. (StackOverflow, 2022)

In terms of AI and computer vision development, Python has one of

the largest libraries for data science, model development, and computer
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vision out there. For data science and processing, the most popular libraries

are NumPy, SciPy, Matplotlib, and Pandas. NumPy is an open-source library

that enables “numerical computing” on Python, which allows for array and

statistical functions to be performed much faster in Python by using Python

as a wrapper around C++ functions (NumPy, n.d.). SciPy is an algorithm

similar to NumPY with a focus on scientific and technical computing, given

implementations for multiple algorithms and techniques with the same C++

core implementation as NumPy. Matplotlib is a plotting library that lets users

generate unique plots for their data with a large amount of control over how

things are visualized and graphed. Finally, Pandas is a library for

``manipulating and analyzing tabular and time series data, and gives users

a large number of options for performing data analysis.

For AI development, Python has two main options: PyTorch and

TensorFlow. Both of these libraries are popular in AI development and

research and are used to design, train, and package AI models to be used in

a number of applications. Both of these libraries can work with NVIDIA

CUDA, allowing training to be accelerated by performing operations on the

GPU, which excels at the matrix operations modern day deep learning AI

requires. For computer vision related tasks, the popular computer vision

library OpenCV has both a native C++ implementation and Python bindings,

allowing the library to be easily used in conjunction with other libraries.

However, Python is a language known for having issues with

parallelization and speed. When using native Python code and comparing to

C, Python takes between 20 to 100 times longer to run common algorithms,

on average (The Computer Language 23.03 Benchmarks Game, 2023).

However, given that many Python libraries are wrappers around C++, and

there exist libraries such as Numba that allow for Just-in-time (JIT)

compiling, this speed issue can be minimized and allow for efficient

processing and calculation.
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7.1b C++

C++ is another high-level general purpose programming language

created in 1985 by Bjarne Stroustrup as an extension to the C programming

language to include object oriented programming capabilities (Stroustrup,

1997). Unlike Python, C++’s language is very similar to C, and demands

more setup from the user, including memory management, specific variable

classes, and all code operating inside of classes and functions. Furthermore,

while Python is primarily partially compiled and then interpreted, C++ is

completely compiled, allowing for much faster calculations. C++ is

commonly used in edge and embedded software development, which given

the need for a fast and minimal power cost AI model, may be appealing.

For AI related support, TensorFlow does have a Lie version for

microcontrollers, and other packages such as Caffe and mlpack allow for

deep learning development to be done in C++ itself (Chatterjee, 2020).

OpenCV, as stated previously, is also natively supported on C++, meaning

that it should be able to support the same type of development as Python.

However, given the extra syntax complexity compared to Python, iterating

and altering models and training schemes is more time consuming, which

may not be desirable for fast development.

7.1c Julia

Julia is a relatively new programming language released in 2012 to be

a high-level, general purpose dynamic programming language with a focus

on numerical analysis and computational science (Bryant, 2012). Julia is

distinct from other languages in that it is designed to be used as a scripting

language with a shell prompt for inputting commands. Many see Julia as a

competitor to Python and C++ in AI and computational mathematics due to
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its efficient garbage collection system and just-in-time compiler (Karpinski,

2013).

For AI support, Julia has its own list of supported packages, with

Flux.jl, MLJ.jl, and Knet.jl being the most popular (JuliaHub, Inc., n.d.).

These packages have a unique format compared to PyTorch and Tensorflow,

as they involve more explicitly connecting each layer of the network, unlike

TensorFlow to some extent, while still abstracting some of the training

functions from the user, unlike PyTorch. For OpenCV support, it does support

Julia bindings, however there is a requirement that Python is already

installed on the machine.

Julia’s main downside is its lack of widespread adoption and support.

In the 2022 Stack Overflow survey, only 1.53% of users used Julia, which is

a sharp difference between Python’s 48.07% and C++’s 22.55%.

Furthermore, its main differences and offering lean more towards supporting

researchers and scientists and not directly AI development and deployment.

Given that the project is mainly concerned with model training and

deployment onto an edge device, Julia may not have the offerings that are

required for this project.

7.1d Mojo

Mojo is a recent programming language released in 2023 that is meant

to be a superset of Python, providing a more unified framework for artificial

intelligence development. Unlike Python, which does not natively run

efficiently due to its partial interpretation of code versus compilation, Mojo

compiles the Python code and includes a runtime environment internally for

faster code execution (Modulor Inc., n.d.). Mojo is also designed to perform

parallel processing of code, unlike Python, which performs only

single-threaded execution. According to Mojo’s own claims, it can run 68,000
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times faster than native Python, and 5,000 times faster than C++. Mojo is

also able to interface with existing Python libraries, such as Matplotlib and

NumPy, making it an appealing option for optimizing model performance and

development.

However, the main concern with Mojo is its maturity. Since it was

released in 2023, it is not fully publicly available yet, and is still in a preview

release. Furthermore, by being such a new language, there are not many

existing support groups or existing guides to programming in and debugging

Mojo code. This is unlike the other languages, which have had time and

experienced developers to develop support tools and documents for their

languages. Finally, given that the existing Python libraries already have

techniques for improving performance, Mojo’s claimed improvements may

not be greatly needed for this project.

Given the options listed above, Python was chosen to be the

programming language for AI model development. While other languages

may offer faster processing natively, the extra development time either with

the syntax or lack of existing community represent a major hurdle for

development. Furthermore, speed issues in Python have been addressed

with the existence of the previously mentioned libraries, most of which are

Python bindings around C++ libraries. Finally, Python’s large community and

large unofficial and official documentation in AI and computer vision make it

stand out amongst the other languages, making it the best choice for

efficient development.

7.2 Deep Learning Library

In deep learning development on Python, there are two main libraries

used for development: TensorFlow, owned and developed by Google, and

PyTorch, initially created by Meta and now owned by the Linux Foundation.



52

Both libraries have different advantages and disadvantages for development,

and thus, it was important to choose one library for the project and stay with

it. The choice of library would affect the availability of using existing

repositories and how the model would be deployed to the mobile application.

7.2a TensorFlow

TensorFlow is a popular deep-learning library for making production AI

and allows for quick design, training, and deployment of AI models. Its

design uses an API-style construction for its neural network models, where

models are constructed by creating a single object with the necessary layers

and letting TensorFlow control the forward propagation, optimization, and

scoring during training. TensorFlow’s main advantage is being able to quickly

make simple models and deploy them, especially on mobile with Tensorflow

Lite (Google, n.d.).

However, Tensorflow is disadvantageous for making more complex

models that involve different layers skipping each other and rejoining, as its

API-style architecture lends itself more to models with no skip connections.

Furthermore, TensorFlow’s design does not make it easy to make quick

changes deep in the architecture, unlike PyTorch, as TensorFlow will change

entire layers and pipelines. Finally, TensorFlow is not structured in a Pythonic

style, meaning developing in TensorFlow is similar to using an entirely new

language.

7.2b PyTorch

PyTorch is an object-oriented style deep learning library that is more

popular in research environments and developing state-of-the-art models.

PyTorch’s syntax is very similar to the regular Python syntax, so it is easier

to understand and learn for those already familiar with Python compared to
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TensorFlow. PyTorch also allows for faster testing and modification, as its

dynamic computation graph allows for immediate feedback on any errors

found, while TensorFlow uses a static computation graph that makes it

harder to debug. PyTorch is also the library of choice in computer vision

research and development, as computer vision is a heavily researched field,

so there is some blend between industry and research tools and

developments in this field.

The main disadvantage of PyTorch is that it has a higher learning curve

and has greater demands on the developer writing it. Unlike TensorFlow,

PyTorch requires the developer to design the feed-forward component of the

network alongside the network layer definitions. Furthermore, PyTorch does

not have automated training, unlike TensorFlow, so the developer has to

write the code to feed the training data to the model, calculate the loss, and

backpropagate the gradients to improve the model. Another issue is that

PyTorch’s ecosystem and edge deployment systems are not as fleshed out as

TensorFlow’s. TensorFlow is widely considered to have a larger and more

robust ecosystem compared to PyTorch, and while PyTorch does have some

capabilities to export its models to edge and mobile applications (The Linux

Foundation, 2023), it is a more involved process and not as smooth as

TensorFlow.

Based on the advantages and disadvantages between these two

libraries, it was decided that we would use both TensorFlow and PyTorch is

our trainings where appropriate. PyTorch is better used in the laptop

application, as you can directly interface with the GPU and it is easier to set

up training and inference. For mobile training, on the other hand, it is better

to use TensorFlow, as there are better mobile deployment options and there
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is the TensorFlow Object Detection API for directly training mobile oriented

object detection models.

7.3 Task Selection

In order to detect potholes, it was important to select which type of

task the model would perform. Detecting potholes is a broad task that could

be perceived as just classifying if there is currently a pothole in view or

finding where a pothole is currently in view in an image. Furthermore, if

finding a pothole in an image, it is important to decide what level of detail is

needed, i.e., if it is important just to know the general area of the pothole in

the image or if knowing the exact pixels in the image corresponding to the

pothole are important. Based on these possibilities, there are three possible

ways to define the tasks: image classification, object detection, and object

segmentation.

7.2a Image Classification

Image classification is the most straightforward task of the three; the

model would simply have to decide whether or not there is a pothole

somewhere in the image without giving any information as to where. Image

classification from an architecture viewpoint generally involves feeding an

image into a convolution neural network that eventually feeds into one or

more output nodes, where each node is a potential class. In this case, it

would be a single node for whether or not there is a pothole in the image.

Figure 7.2a.1 shows an overview of image classification, where a whole

image is binarily classified as having a pothole or not.
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Figure 7.2a.1: Image Classification Overview. Source: Clipground.com

For detecting if there is a pothole on each side of the road or in the

lane of a tire, the raw image could be cropped, and the cropped image fed in

for classification. However, image classification does not provide information

on the pothole's location and does not let the AI confirm if one pothole is the

same as a detected pothole in a previous image. Furthermore, classification

does not provide any information on the number of potholes in the image,

which would interfere with the need to submit the number of potholes found

to the database.

7.2b Object Detection

Object detection is a more complex task than image classification,

which involves not only classifying if there is an object in an image but

where that object is in the image as well, usually in the form of a bounding

rectangle around the object. Object detection is a very popular computer

vision task, as locating objects in images is useful in fields such as security,

transportation, healthcare, and agriculture, to name a few. Furthermore,

object tracking, which involves assigning IDs to bounding boxes detected in

images coming in sequentially, allows for objects to be tracked as they go

through videos, allowing computer vision to be used in real-time tasks where

continuous information needs to be understood.
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The basic operation of object detection is similar to image

classification, but instead of just returning a single classification for the

entire image, it splits the image into small sections and gives a classification

and confidence to each section. Then, the model generates a list of potential

bounding boxes that could have something inside. If there is a bounding box

where the sections contain majoritively one class, then that bounding box is

kept and given the majority label. Finally, all labeled bounding boxes are

thresholded by a minimum confidence, and the model outputs the bounding

boxes with the highest confidences. Figure 7.2b.1 below demonstrates how

object detection is performed, with a bounding box drawn around the

detected pothole.

Figure 7.2b.1: Object Detection Overview. Source: Clipground.com

For this project, object detection is very useful because locating and

tracking detected potholes will allow the application to estimate where the

pothole is in the real world and if it is in line with the driver’s vehicle’s

wheels. Furthermore, having the potholes’ locations allows for a more

accurate estimation of their locations, as there are models that can estimate

the depth of a location in an image, which can be used to calculate the

potholes’ distance from the phone. Finally, there are many real-time object

detection models widely available for edge and mobile computing, so object

detection could be a good task definition for the project.
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7.2c Object Segmentation

Object segmentation is similar to object detection in that the model

finds the actual location of an object in an image. However, unlike object

detection, object segmentation finds the object's outline and returns it as a

polygon. The particular type of object segmentation necessary for this task

is instance segmentation, which involves only finding the outline of

important objects and ignoring the rest of the image. Object segmentation

models operate like object detection models, but after labeling the bounding

boxes, there is a mask generation layer where each of the pixels inside the

bounding box is classified as part of the object inside or not. After the pixels

are classified, an outline mask around the positively labeled pixels is

generated and returned by the model instead of the bounding boxes. Figure

7.2c.1 below shows instance segmentation for pothole detection, with an

outline around the detected pothole shown.

Figure 7.2c.1: Object Segmentation Overview. Source: Clipground.com

A major advantage to using object segmentation models is that it

gives a more precise definition of where the pothole is located in the image,

which can allow for more accurate location estimation compared to bounding

boxes. The nature of potholes is that they are not always perfectly circular,

so a simple bounding box could cover much more area than the actual

pothole covers. Furthermore, highlighting the pothole itself may
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communicate more information to the user than just a simple bounding box,

as the user would still have to look in the bounding box to find the pothole.

However, there are downsides to object segmentation that make it not

desirable for this project. While object detection does provide more

information, it comes at the cost of having a more complex model. Object

segmentation models are known to perform slower than object detection

models, given the need for an extra stage to refine the outline masks of

objects. Given that this model will be used in real-time and potentially

high-speed areas, this performance increase is of great concern. Secondly,

the extra information may be of little value to this project. While having

more accurate calculations is generally desirable, in this project, having a

good estimation while keeping up performance is a minor loss overall.

Finally, while drawing object outlines could communicate information more

clearly to drivers than bounding boxes, bounding boxes are easier to

interpret and, therefore, would be understood faster than polygons.

After evaluating the three possible tasks, it was determined that object

detection would be the best for this project’s AI model. The need for fast

computation and existing implementations give a preference towards object

detection models, which generally have less processing time compared to

segmentation models and perform similar tasks for this project’s needs.

Furthermore, while having a precise shape of where the pothole is may be

convenient for more accurate location estimation, it is not necessary, as

adequate estimations can be acquired from just object detection. However,

many popular object detection models for mobile deployments also come

with segmentation versions as well, so if need be, there can be a switch if a

more precise model is needed and can be supported by the hardware.



59

7.4 Model Selection

There are numerous object detection models in research and industry,

some designed for real-time, edge computing tasks, and others designed to

be as accurate as possible, regardless of speed. For real-time object

detection, there is a major focus on minimizing model size while maintaining

model accuracy.

Model accuracy is measured using mean average precision (mAP),

which is the average of the intersection of a predicted bounding box and a

ground truth ground box divided by the union of the area of the two

bounding boxes for all bounding boxes tested against different confidence

thresholds. mAP is commonly averaged using threshold confidences from

50% to 95%, which gives a reasonable estimate of how accurate the

predicted bounding boxes are. Table 7.4.1 below details some of the most

popular object detection models circa October 2023, with a discussion of

each model and their potential use for this project. The models here have

been scored on the the Common Objects in Context (COCO) dataset, which

contains over 200,000 labeled images for object detection models (Microsoft,

2014).

Another important consideration is whether the models exist only as

papers and GitHub repositories or are packaged for convenient use.

Prepackaged models are useful because they shorten development time, as

instead of needing to take time to implement, debug, and test a model

implementation, an existing implementation can be fine-tuned on new data

instead.

Model mAP 50-95 (COCO) Packaging



60

YOLOv8 37.3 - 53.9 Yes

YOLOv5 28.0 - 55.8 Yes

EfficientDet 34.6 - 55.1 Yes, but Deprecated

MobileNetV2 22.1 Yes, but Deprecated

FTable 7.4.1: Table of Popular Real-time Object Detection Models

(Srinivasan, 2023) (Ultralytics, 2022) (Tan et al., 2019) (Sandler & Howard,

2018)

7.4a YOLOv8

YOLOv8 (Ultralytics, 2023), made and maintained by Ultralytics, is one

of the most popular real-time object detection models currently. With a

simple pip package and command line interface, it is easy to train and

fine-tune their models with new data, with minimal setup from the

developer. YOLOv8 allows for image classification, object detection, object

segmentation, and object tracking, meaning it can fulfill a number of

different tasks that may be useful for this project. YOLOv8 also has multiple

packages available for mobile frameworks, such as Flutter, for specifically

porting these models to mobile, making YOLOv8 enticing for training and

exporting. However, YOLOv8’s smaller models, sizes “n” and “s”, have

noticeable performance decreases compared to other architectures, so it

might not be the best model for this task from a performance point of view.

The model, however, is very fast, taking less than one millisecond to process

an image.
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7.4b YOLOv5

YOLOv5 (Ultralytics, 2022) is a popular iteration of the YOLO

architecture that was initially released in June 2020. It had better and faster

performance compared to other existing models at the time, was packaged

for easy training and distribution, and had many libraries that interfaced with

it directly. It has similar issues as YOLOv8, but YOLOv8 is recorded as

outperforming YOLOv5 in all model sizes. YOLOv5 is another potential

option, as different models, despite being older, can have superior

performance in different tasks than newer ones.

7.4c EfficientDet

EfficientDet (Tan et al., 2019) is an older object detection model

primarily designed towards scalability and efficiency. Unlike the YOLO

models, which, while efficient, were not designed to run on extremely limited

computational resources. EfficientDet was designed to run on constrained

hardware resources while being more accurate than other state of the art

object detection models at the time. The downside to potentially using

EfficientDet is that, as the model is smaller and less complex, the model may

not perform as well as the previous models. This could be a major concern,

as potholes may be infrequent enough that a customer may be upset if the

model misses even one obvious pothole.

7.4d MobileNetV2

MobileNetV2 (Sandler & Howard, 2018) is another object detection

model oriented towards running on lower computational power devices.

MobileNetV2 is an improvement over MobileNetV1 by introducing linear

bottlenecks between the layers and shortcut connections between the

bottlenecks, which leads to significant performance improvements over

previous versions. Figure 7.4d.1 shows the overall diagram of MobileNetV2,
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which is a straightforward, single pass architecture. The power of MobilNetV2

is that is it one of the fastest object detection models out there, especially

for running on mobile devices. The particular version of MobileNetV2 the

team investigated was MobileNetV2 SSD, where SSD stands for single shot

multibox detector. As can be seen in the figure, MobileNetV2 does the

feature extraction, and the SSD model performs the actual object detection

in the model. For this model and the EfficientDet model, there is not any

official documentation, but TensorFlow does support and Object Detection

API for deploying these models on mobile devices. However, for training a

model, the TensorFlow Lite Model Maker is the best tool, but the tools are

deprecated and took a special configuration of Python. Training was also

difficult to configure and was inefficient compared to the YOLO framework.

Figure 7.4d.1: Diagram of MobileNetV2 architecture.
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8 Data Collection

In order to train the models for benchmarking and integration into the

mobile app, they need to be trained on a custom dataset containing

potholes. However, in order to assure that trained models can operate

accurately and consistently in multiple types of environments, data

requirements will be needed. Specifically, there needs to be quality checks

that the collected data is relevant to the task, stored in a central and

accessible location, and can be used for training and fine-tuning existing

models to the pothole detection task.

8.1 Data Requirements

There are three major quality assurance requirements for the dataset

to ensure that the model will generalize well to multiple environments and

consistently detect potholes accurately. The first two are absolute

requirements, and the latter are greatly encouraged, but datasets that

include one of the requirements but not the other may be used.

8.1a Labeled

This requirement is simple; all the images need labels on them, and

the labels need to be of potholes. The labels need to be on specifically

potholes, as that is the main focus on the mobile application. While other

debris may be useful later, given that it is not likely there will be many

datasets that include all the extra labels, it is best to focus on just potholes

specifically. Any datasets with extra classes should only be used with the

pothole labeled images. Figure 8.1a.1 below shows two examples of pothole

images; on the left, a pothole image without a label that would be rejected

and on the right, a pothole with the required label that would be accepted

into the dataset.
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Figure 8.1a.1: Example Images of Unlabeled Pothole Images (Left) (Davies,

2019) and Labeled Pothole Images (Right) (Intel Unnati Training Program,

2023).

8.1b Clean

This requirement is for assuring that the pothole images do not contain

any noise or obstructions that would hurt generalization during model

fine-tuning. Models trained with raw noisy or shaky images will perform

poorly both in training and in live testing due to poor generalization against

clean data that would appear in production environments. While it is

common practice to add transformations onto images in datasets to increase

training set size and to improve the robustness of the object detection

models, having some images already transformed while others not will

create a confusing dataset of either having to transform only part of the

dataset or over-transforming other parts. Figure 8.1b.1 below shows an

example of a pothole image that would be rejected due to this requirement.

The image is noisy and already artificially adjusted; this image would be

useful if included in an already augmented dataset, but the matching

untransformed image would be preferred instead.
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Figure 8.1b.1: Example of Rejected Image Due to Noise (Dalsaniya, 2021).

8.1c No Obstructions

This requirement encompasses the idea that the vehicle’s outer

windshield frame should not be obstructing the smartphone’s field of view,

limiting the range it can see the road and detect potholes. While a driver’s

setup may include their dashboard, having inconsistencies in the dataset in

how much of the road is seen may worsen close detection, which could be

vital in confirming the location of the potholes and notifying the user. It is

also important to have a consistent view, as any blockage does not

communicate anything important and instead hides information that may be

important for the model’s performance. Figure 8.1d.1 below shows two

example images, where the left image has the dashboard covering a

significant percentage of the camera’s view, while the right image has

minimal obstruction.

Figure 8.1d.1: Examples of Pothole Images With (Left) (Nienaber et al.,

2015) and Without Obstructed View (Right) (Basily, 2020).
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8.2 Found Datasets

To create an AI model that can properly predict potholes, there must

be a dataset as the input. The requirements above were used to find these

datasets on the internet. Two of the best dataset hosting websites are

Kaggle and HuggingFace. Both sites are primarily intended for image hosting

with labels, which is what is required for the AI model. These sites were the

first to be scoured for the pothole datasets they provided.

Neither Kaggle nor HuggingFace had datasets that were both large

enough and fulfilled the requirements that were set in place. The final

dataset used was taken from three different smaller datasets and compiled

together onto one core platform. Originally, there were going to be four

different datasets. It was discovered that one dataset was a subset of

another, so it was removed. To avoid this issue occurring with the three

datasets selected, the remaining datasets were scoured for overlap. No other

overlap was found. The four datasets utilized to make up the final dataset

are below.

8.2a RDD2022

The first dataset found was the Multi-National Road Damage Dataset,

also known as the Road Damage Dataset (RDD2022) released as part of

2022 IEEE BigData Cup under the Crowd sensing-based Road Damage

Detection Challenge (CRDDC’2022) (Arya et al., 2022). The dataset includes

47,420 road images from Japan, India, the Czech Republic, Norway, the

United States, and China. Of the labeled images, there are 6,544 pothole

annotations. This dataset collects from a wide variety of viewpoints and

locations and meets the first two requirements for the dataset. For the third

and fourth requirements, different images from different countries may not

pass one requirement or the other, but overall, the dataset is able to pass all
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four requirements. Figure 8.2a.1 below shows some example images from

China, the Czech Republic, and Japan, respectively.

Figure 8.2a.1: Example Images from RDD2022 (Arya et al., 2022).

8.2b Road Damage – Dataset Ninja

This dataset comes from Alvaro Basily collected from an unknown location.

The dataset has annotations for potholes, lateral cracks, longitudinal cracks,

and alligator cracks. Of the potholes annotations, the dataset has 1,331

images and 2,657 annotations (Basily, 2020). The dataset is fully annotated

and has clean images, meeting the first two dataset requirements. Figure

8.2b.1 shows a collection of images from the dataset.



68

Figure 8.2b.1: Example Images from Road Damage Dataset (Basily, 2020).

For the third and fourth requirements, all the images are in viewpoint

similar to the dashcam viewpoint, and there are minimal to no obstructions

from the camera view. Therefore, this dataset was chosen to be included in

the overall pothole dataset.

8.2c AI Pothole Detection Computer Vision Project

The AI Pothole Computer Vision Project dataset is a mixed dataset of

potholes and other miscellaneous annotations collected from Indian roads.

This dataset is a merging of 5 existing datasets, totalling to 2,218 images

with pothole annotations. The dataset was created by the Intel Unnati

Training Program, a program launched by Intel to help Indian students learn

required skills to enter the market (Intel, 2021). Figure 8.2c.1 displays a

small collection of images from the dataset. The images selected show a
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common viewpoint amongst this dataset with the pothole pictures often

being up close to the potholes and from the side of the road.

Figure 8.2c.1: Example Images from Intel Training Dataset (Intel

Unnati Training Program, 2023).

When filtered for annotations that only include potholes, this data

passes the first two core requirements. However, as can be seen, the third

requirement of the dashcam point of view is not passed. However, given that

two other datasets with dashcam point of views have been included, and

there are no major obstructions from view in the dataset, it was decided that

this dataset would be added to the overall project dataset.

8.2d Road Pothole Images for Pothole detection

This dataset is a pothole-specific dataset released in 2018 collected

near Stellenbosch, South Africa. This dataset is different from the others in

that it is split into two sub-datasets, a simple and complex dataset with

some overlap. Overall, the dataset has 2,008 images with 7,588 pothole

annotations between the two sub-datasets (Nienaber et al., 2015). Figure

8.2d.1 displays a collection of images from the dataset. As part of

processing, the two sub-datasets were merged and duplicates removed, so

images displayed here will not be indicated from which sub-dataset they

originate from.
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Figure 8.2d.1: Example Images from Stellenbosch dataset (Nienaber et al.,

2015)

For the dataset requirements, after filtering the images with pothole

annotations are kept and all the images are clean with no noise. For the

supplementary requirements, as can be seen in the figure above, the field of

view is in the dashcam position. However, the dashboard is significantly

obstructing the view of the camera, so the fourth requirement is not being

passed. However, given the balance of viewpoints from the other datasets

and the complex scenarios represented in this dataset, it was decided to add

this dataset to the overall pothole dataset.

9 Dataset Hosting

In order to host all the data collected, a robust cloud storage provider

needed to be found. After looking at the available storage options, including

OneDrive and Supabase, Roboflow was chosen as the primary site to host

the dataset. There are three reasons for that:
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● Roboflow provides ample resources and video tutorials on running AI

models with their technology, specifically including YOLOv8 and

YOLOv5, which are on the list as potential models of choice.

● Roboflow’s uploading dataset procedures allows the app to upload

many different types of annotations on images from many different

websites. Roboflow then will sort through them all, upload, and

combine the image and annotations automatically.

● Roboflow provides many different resources for manipulating the

dataset. This includes removing unwanted classes, editing existing

annotations, performing augmentations to the dataset, and configuring

transformation to run when downloading the dataset for training.

For the app’s purposes, Roboflow is being used more for its dataset

abilities, despite having cloud-based models available. Roboflow provides the

ability to test an AI model on YOLOv8 and YOLOv5 using Colab, using a

straightforward process with many resources. For the final model that is

trained, Roboflow will not be used, as the app requires the ability for the

model to work offline. Roboflow does not provide that capability without

direct integration and a price increase. The final dataset link can be found at

https://universe.roboflow.com/pothole-wipm4/ai-pothole-detection-hitzl.

9.1 Dataset Divisions

During the process of uploading the datasets to Roboflow, they are

automatically divided into three separate sub-datasets: the Training,

Validation, and Testing sets.

The Training set consists of 70% of the images in the entire dataset.

These are the images that will be primarily used during model training and

fine-tuning and will be used to teach the model how to detect potholes while

on the road. This dataset, as the largest, is expected to be well-balanced

https://universe.roboflow.com/pothole-wipm4/ai-pothole-detection-hitzl
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and have a representative sample of the different locations and viewpoints

previously discussed in the uploaded datasets.

The Validation set is the following 20% of the dataset used for

benchmarking the model performance during training and to give a

performance benchmark during any hyperparameter tuning. The validation

dataset is used during training to test if the model is potentially overfitting

on the data. If the training performance is still improving but has stalled on

the validation data, then the model is overfitting and should be stopped

early or modified to prevent overfitting.

The testing set is the final 10% of the image dataset, and is used to

judge the final performance of the model. The images in the testing dataset

are meant to never be seen by the model during training or validation, and

are a final benchmark to compare model performances.

9.2 Dataset Uploading

The first dataset uploaded was the RDD2022 dataset. This dataset

needed to be manually divided and filtered in order to remove non-pothole

annotations, as some locations possessed more than the 10,000 image limit

set by Roboflow for their free tier. This dataset contained 2,300 images that

were relevant to the project with the 6,544 annotations.

The second dataset that was uploaded was Dataset Ninja. Dataset

Ninja had four separate labels, but the only important label for the app to

use is the pothole labels. Removing them was difficult. The dataset was

uploaded to a separate Roboflow model, then pre-prepared for running a

model. Pre-preparing a model is what allows the dataset to get sorted into

Test, Train, and Valid. By doing this, the model was set to only look for

pothole images. This still left in all of the images that have different labels in
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the dataset. It only means that they have no potholes in them. The next

task that was taken was to remove all images that have a “null” amount of

labels in the dataset. This left only the images that have potholes in them

and only potholes. 1,000 images from this dataset were used.

The third dataset that was uploaded was the Roboflow dataset with

dashcams. This dataset was pulled from the same website, Roboflow, that

the images were hosted on, so it’s reasonable to assume this process is

easy. However, there were some difficulties. To upload the dataset, a new

model was branched from the dataset, and the process to train the model

was begun. Only then was the dataset able to be downloaded. The dataset

was then uploaded for 1,500 images.

The final dataset uploaded was the Stellenbosch dataset. Before

uploading to Roboflow, the simple and complex sub-datasets had to be

merged. This was done by moving all the images in the simple sub-dataset

with potholes annotations into an output folder and logging their hashes,

then moving over the complex sub-dataset into the same folder, ignoring

any images that had hashes that were previously seen. In total 9,303

images were uploaded.

10 Model Training

There are a wide number of models that the app could potentially use.

The original intention was for the app to use YOLOv8, but there are a large

number of options that the final dataset can be tested on. Before

implementing the model into the mobile network, different models were

tested on different datasets. First, the models were tested on a rough-draft

Pothole dataset taken from HuggingFace to serve as a test of the different

models while still in the pre-processing phase. This test was used to assess
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the feasibility of the project as a whole. If an AI model could not identify

potholes in a useful way with high enough accuracy, then the project cannot

work with this method. The dataset was tested with some code written in

Python on a group members’ Macbook. These early runs were luckily a

success. There was potential in the implementation of AI models on pothole

datasets.

Once the final dataset was compiled into Roboflow, where the data was

kept (see AI Database Storage), the dataset was tested on YOLOv5 and

YOLOv8 to compare their differences in performance across different

metrics. YOLOv8 is the newer model with features that YOLOv5 doesn’t

have, whereas YOLOv5 has a more streamlined implementation with Flutter;

there is a direct and tested Flutter third party software which implements it

straight into the app. The team also trained a MobileNetV2 model after

testing the YOLOv8 and YOLOv5 on a mobile device and not being able to

reach real-time performance.

10.1 Training Setup

The YOLOv8 and MobileNet models were trained using one of the team

member’s RTX 3090 GPU, as it trained faster than using UCF’s Newton

server and using the GPUs available on Google Colab, while the YOLOv5

model was originally trained using Google Colab.

YOLOv5 was trained for 50 epochs with a learning rate of 0.01 and

YOLOv8 was trained for 100 epochs with a learning rate of 0.01. Roboflow

provides outline code for starting to test with YOLOv8 and YOLOv5, which

was used. The MobileNet model was trained for 70,000 steps, in which a

single step is a single batch of images, using the TensorFlow Object

Detection API. However, the output is the completed AI model and that can

be installed with Flutter. The model is simply being trained differently. The
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Colab that runs the AI model for YOLOv5 does five things to prepare the

model to be run:

● Implements OS to use. YOLOv8 specifically is primarily intended to run

using OS, so this is a necessary step.

● Installs the corresponding model from their own website (YOLOv8,

YOLOv5)

● Uploads Roboflow’s own resources for uploading a dataset into the

local machine

● Uploads the dataset from Roboflow’s systems into the model itself.

This process requires a key, which is provided to the owner of the

dataset.

● Custom trains the model on the GPU associated.

Colab, with a premium plan,provides a T4 GPU on the proper

systems. This is a useful boon to running code while also being able to

adapt the code on the fly. Colab’s systems are optimized for preloading

different code for quick manipulation of specific parts of code. Once

these systems are in place, and a few smaller systems, the model can

be run. The process for running YOLOv5 and YOLOv8 are slightly

different, but both use the same outline as detailed above.

In order to evaluate the performance of the models, the following

metrics were used:

● mAP- 50: The Mean Average Precision (MAP) is an evaluation metric in

object detection. It measures the average precision of the AI model

over a certain threshold – in this case, the threshold 50% (50%

confidence. It measures how good the overlap between the data in the

dataset and the model’s prediction is.
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● mAP 50-95: An extension of the MAP metric that extends from 50%

to 95% confidence, instead of just 50%. It gives a more

comprehensive view of model performance over broader thresholds.

● Recall: The average of the number of bounding boxes are correctly

drawn in a location versus the total number of bounding boxes in the

dataset itself.

● Precision: The average number of times the predicted bounding boxes

have the correct class and location to the ground truth label.

10.2 Results

After training both models, YOLOv8 had a clear advantage in

performance over YOLOv5. In mAP-50, YOLOv8 outperformed YOLOv5 by

19.8%, and outperformed by 15.9% in maP 50-95. In terms of recall and

precision, YOLOv8 again outperformed with 16.8% and 10.1%, respectively.

Figure 10.2.1 displays the performance results of YOLOv8 and YOLOv5, and

the following Figures 10.2.2 and 10.2.3 display the training performance

results on the validation dataset.

Model Recall Precision mAP 50 mAP 50-95

YOLOv8 0.614 0.778 0.673 0.34

YOLOv5 0.46 0.610 0.475 0.181

Figure 10.2.1: Results Table after Training on Pothole Dataset

YOLOv8’s higher mean average precision means that the model will

most accurately detect potholes and will more accurately detect their true

location. Furthermore, YOLov8 better recall and precision metrics give

increased confidence that the model will not both detect potholes that don’t

exist nor miss potholes that appear in the images. Given YOLOv8’s clear
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performance difference on all metrics compared to YOLOv5 and the ease of

implementation for both models, YOLOv8 is the current model selected for

integration with the laptop application. For the mobile application, we went

with the MobileNetV2 model the team trained, as it had the lowest latency

on the testing device, which was a Samsung Galaxy S10+ running Android.

The latencies can be found on Figure 10.2.4. The team deployed all the

models after running through their respective mobile optimization pipelines

and performed INT8 quantization. All models had a notable drop in

performance after quantization, but the MobileNet model was able to meet

the speed requirements once quantization was applied. However, as will be

seen later, the quantization hurt the mobile performance too much to be

usable, but as it was the only model that could be ran on the mobile device,

the team switched to developing a laptop program instead. For the laptop

program, the team used the original YOLOv8 model we trained, as the laptop

the team was using had a GPU that could easily run the model in real time.
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Figure 10.2.2: Per-Epoch Validation Performance for YOLOv8

Figure 10.2.3: Per-Epoch Validation Performance for YOLOv5

Model Latency (ms)

YOLOv8 880

YOLOv5 650

EfficientDet D0 350
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Real-time Requirement (5 FPS) 200

MobileNetV2 SSD 150

Figure 10.2.4: Per-Epoch Validation Performance for YOLOv5

11 Mobile Design and User Experience

11.1 Application Pages

The application has three main pages and four pages overall. It is

strictly in landscape mode because that allows the camera feed to have the

best field of view for the model to process and interpret. The application also

has a swipeable app drawer with buttons to allow the user to navigate

between the pages.

The first page is a welcome screen which will only be forcefully shown

to the user on the first time they open the application. This page provides

the user with a warm welcome to the application and gives a brief tutorial of

what the application does and rules on how to use it effectively. Once this

page is dismissed it will not be shown in the navigation app drawer but it can

be viewed again at any point by accessing it from the settings page.

The second page is the main view of the application and it is a camera

view. This application essentially turns the user’s smartphone into an

interactive driving aid so it is important for user experience to display the

camera feed of what the phone camera and model sees while the user is

driving. Not to compare it to another application but it is very similar to the

SnapChat user interface in which the main application page is the phone’s

live camera feed. This page displays nothing other than the camera feed,

aside from road obstruction alert interface elements but this will be

explained later in this document.
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The third page is the settings page. While this page sounds boring and

uneventful, it is the most important page for the user and for the app’s

functionality. The settings page consists of multiple tabs, buttons, toggle

switches and sliders that control all of the application features and functions.

There is a button that leads to a “More Information” page which displays the

first page discussed in this document. There is a button that resets all

settings back to its initial settings. There are toggle switches that handle

alert settings and notification settings that the user may or may not want.

Since the group has a visual and audio alert when a pothole is detected,

users have the option to turn those off if they are uncomfortable with either

setting.

The fourth page is the map page. This page is a stretch goal that

allows the users to view all the locally reported potholes in their area on a

map. The map service used is Google Maps, as it was agreed by the team

since the group thought it has the smoothest experience, pleasant

aesthetics, and easiest implementation for flutter. When the user first opens

the page, the map is taken directly to the user’s location. The potholes are

displayed on the map with Google’s pin markers.

These four pages have the following navigation flow. When a user first

opens the application initially, it displays the welcome page. From there,

they navigate to the App Drawer which houses the Camera and settings

view. From there they may navigate to either the camera view or the

settings view with the app drawer. From the camera view, the user may

navigate to the settings view and vice versa with the app drawer. The map

button in the app drawer navigates them to a separate page for the map

view, and can navigate back with the system’s back feature. And from the

settings view, the user may navigate to the “more information” page to

access more information about the app’s functionality if they ever forget.

Below, Figure 11.1A is a diagram of how the app’s navigation flow is
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demonstrated.

Figure 11.1A: Git Process

11.2 Figma

In order to start planning for mobile development the team has

created a Figma for the app. This allowed the team to start picturing what

the application will look like and make any easy changes to the UI before the

group starts actually developing the app. The Figma was made by only 2

members of the team but they have taken inputs from everyone involved in

the project in order to try and keep everyone up to date and implement any

good ideas that come up.

All of the screens were subject to change based on time constraints.

The team made the application look as professional and user friendly as

possible, but first, the team had to implement the model into the app. The

work on the application started before the AI models were trained, so while

waiting for the models, the user interface was polished before the AI model

was implemented. The group spent time afterwards in making sure the

application is fully functional.
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Aaron built the skeleton of all of the screens and Andy, in mobile

development, took the time to make it look better and added in some

pictures.

11.3 Camera Screen

Figure 11.3A is the “Camera Screen” which is the most used screen

and the default screen when running the app. The screen is strictly in

landscape mode because of the fact that the model is trained in landscape

mode. There might be issues with the model if it is trained in landscape and

then tested in portrait, so the team plans on limiting the application to only

be in landscape for now. One of the goals this group has is to manipulate the

camera whether it is filming in landscape or portrait in order to allow the

user to mount the camera as they like and remove the restriction of

landscape only in the app, therefore bettering the user experience.

The red bars on the sides of the screen, as shown in figures 11.3B and

11.3C, appear when the model detects a pothole and the user is going to hit

it. If the model detects the pothole on the left side of the road it gives a

visual notification with the left bar extending out onto the “Camera Screen''

along with the caution symbol.

When the banners are shown independently, a sound is played for

each side. When a pothole is detected on the left side, the sound that is

played is a voice that says “left”, and on the right side, the sound that is

played is the same voice that says “right”. When the setting is disabled and

the banners show on both sides at the same time, one sound is played which

is a more general alert tone.

It is understood that if the driver of the vehicle is the only one in the

car while using the app, then the visual cue can be distracting and unsafe. In
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order to account for that, there are two different audio cues that play

depending on which side of the road the pothole is in order for them to avoid

it and not be distracted visually. The team took steps to allow the user to

change the opacity of the red bars in order for it to not be as distracting as

well as change the volume of the audio cues as needed.

Figure 11.3D shows a pothole being detected with the setting for

detecting potholes on the left side and right side independently disabled. It

also shows how the bounding box looks like around a pothole. This is useful

for the user to see physically where the pothole will be on the road,

especially if this option to show the banners independently is disabled.

When the camera page is first opened, a road overlay appears on the

screen to help guide the user’s camera view line up directly with the road

ahead of them. This is shown in figure 11.3A. This is important because the

application is designed to detect potholes in the general area where the

driver would usually have the road showing on screen.

Figure 11.3a Road Overlay Figure 11.3b Left Warning Banner
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Figure 11.3c Right Warning Banner Figure 11.3d Bounding Box

11.4 More Information Screen

Figure 11.4A is the application’s “More Information Screen.” This

screen opens the first time the application is opened to allow the user to

understand what the application does better and how they have to set up

their phone for it to work as intended. In this particular rendering, the team

decided to make a significant modification by altering the original font choice

that the team had initially selected. The reasoning behind this decision was

to transition from the initial font, which may have conveyed a more casual or

informal tone, to a font with a formal and serious aesthetic. This

transformation was intended to instill a sense of authority and promote a

heightened level of user confidence in the application.

As it was stated above, the model was trained in only landscaped

pictures and videos so the application itself must be in landscape. The phone

will have to be mounted on the dashboard of the car with the camera facing

towards the road, out the windshield. This gives the best point of view of the

road along with having a wide point of view that makes it a lot easier to

calculate whether the pothole is appearing on the left side of the road versus

the right side. Having this wider view will also tremendously help when

trying to calculate if the user will actually strike the pothole or not. When

filming in portrait the camera is unable to obtain as much information and

therefore it might not be as accurate when making these calculations.
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Figure 11.4a: More Information Screen

11.5 App Drawer

The main app runs on a background page which is actually a drawer.

This drawer can be accessed by swiping left to right. As seen in figure 11.5a,

this reveals a section that shows the title of the app, and buttons that

navigate to the camera page, settings page, or the map page. The team

chose to utilize semi transparent backgrounds for the buttons located at the

bottom of the drawer, which house essential settings and camera options.

This design choice was driven by the goal of creating a more streamlined

and less invasive interface, ultimately reducing the visual distractions that

users may encounter during their interaction with the app.

The use of semi transparent backgrounds serves a dual purpose. First,

it allows users to focus on the app's primary content without overwhelming

them with overly prominent buttons. By softening the visual impact of these

buttons, it allows the application to maintain a clean and uncluttered user

interface, making it easier for users to engage with the app's core

functionalities. This approach aligns with principles of minimalist design,

prioritizing content and user interaction over unnecessary elements.

In addition to selecting appropriate icons, the team paid close

attention to the placement and arrangement of these buttons. Their

positioning was carefully considered to ensure that they contribute to the
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app's overall aesthetic. By aligning them evenly and integrating them into

the app's layout, aiming to create a refined and modern look. This not only

improves the visual appeal of the app but also enhances the overall user

experience by providing an interface that feels cohesive and visually

pleasing.

To further improve the accessibility and user-friendliness of the app,

the mobile team opted to use icons within these buttons. Icons serve as a

visual reference that transcends language barriers, making it easier for

users to quickly identify and understand the purpose of each button. This

not only enhances accessibility for a broader user base but also simplifies

the user's learning curve, as they can readily associate visual cues with

specific actions or settings.

Figure 11.5a: App Drawer

11.6 Settings Screen

This is the final screen that is important to the application. This screen

is crucial in allowing the user to change settings to their liking as well as

learn any information they need about the application. In designing this
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screen, the mobile team aimed to maintain a coherent and visually pleasing

user interface that aligns with the design language of the entire application.

There are a few notable design choices in this screen. One notable

design choice was to maintain the semi-transparency in the background.

This decision was made to ensure that the aesthetics of the settings screen

remain consistent with the overall visual theme of the application. By

keeping this design element, it creates a sense of continuity and unity in

the user experience. The other notable design choice was keeping the

format of choosing different buttons to show different information as tabs,

similar to how the app drawer is designed. These design choices provide

users with a familiar and cohesive environment as they navigate through

different sections of the app. This consistency is important because it

reduces cognitive load, making it easier for users to understand and

interact with the settings screen seamlessly.

The following figures show the user interface for the settings page. At

the bottom of the page, two buttons are shown. One is the more information

button, which takes the user back to the same message that shows when

the app is first opened. The other button is the “restore defaults” button,

which when tapped, a confirmation dialogue appears that asks the user for

confirmation to reset all settings back to the initial default settings.

In figure 11.6a, the “General” tab is open and shows the settings for

making the app have a more aesthetically pleasing look, or to have it

perform better. It also contains a check box that gives the user the option to

skip the “more information” screen when the app starts or to bring it back if

the user previously checked the “never show again” box.

Figure 11.6b shows the “Warning Banner” tab open in the settings

page. This section shows the settings that deal with the warning banners

on the camera page. This is where the option to show the left and right
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banners independently is set. Other options are available to customize

the look of the banners, such as background blur, opacity, and the alert

volume. The "Alert Volume" and "Alert Opacity" sliders are especially

noteworthy for their flexibility. There is the slider to increase or decrease

the volume of the notification that plays. Alert Opacity allows the user to

increase or decrease the opacity of the notification bars that are visually

displayed on the screen while the application is in use. This is very

important as if the bars are too distracting for the driver, they are able

to turn down the opacity or turn it all the way off entirely.

Figure 11.6c shows the “Object Detection” tab open. This section

shows the settings that deal with the detection of potholes.

● The option to show latency

info is mainly used for

debugging. As shown in the

image to the right, all info

related to time for

converting camera stream

images, processing time, camera stream resolution, and frame rate is

in red.

● The option to show boxes is what allows the users to see and visualize

where the pothole will be in addition to the alert sound that plays

when a pothole is detected.

● The option to show classification text is to show the text and

confidence level inside each bounding box around the potholes.

● The confidence threshold slider allows the user to control when the

application shows the detected potholes that have a confidence level

above the confidence threshold. When lower, the application is more

likely to show detections that are not actually potholes (false
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positives). When higher, the application may not show all potholes on

the road (false negatives).

● The camera resolution slider allows the user to control the resolution of

the camera stream in case their device cannot handle higher

resolutions.

The inclusion of toggles and sliders is another significant design

choice. These interactive elements provide users with the means to tailor

their experience within the app to their precise preferences. The choice to

offer a slider with no indents or specific predefined selections within the

slider reflects a commitment to user customization. It allows users to finely

tune their settings to meet their unique needs and preferences. This level

of granularity empowers users, making them feel more in control of their

experience, and it's particularly beneficial when preferences can vary

widely from one user to another.

More Information opens the “More Information Screen” that was just

talked about above allowing the user to read about the application in case

they forgot the requirements to have the model and application work as

intended or on the off chance they skip the screen on the first open and

need to have it opened again. The other button is the “restore defaults”

button, which when tapped, a confirmation dialogue appears that asks the

user for confirmation to reset all settings back to the initial default settings.

Finally, the Version of the application is placed in the Settings Screen

for when there are bugs the user is able to check and see if they are

currently running the application with the latest version or if they need to

update it. The Navigation Bar is still displayed at the bottom of the screen

for easy navigation to the other screens.
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Figure 11.6a: General Tab in Settings Screen

Figure 11.6b: Warning Banner Tab in Settings Screen

Figure 11.5a: Object Detection Tab in Settings Screen
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11.7 Mapping in Mobile Application

One of the main stretch goals of this team is to store the locations of

all of the potholes this app has detected in order to better predict when

potholes are coming up. Having this implemented allows the application to

warn the user of potholes very much in advance. There is no screen made

for this in the Figma because it is a stretch goal and the group primarily

focused on implementing the user interface and getting a working model

implemented into the mobile application first.

The group was able to create a fully fledged application with time to

spareto implement this functionality as the first priority. More about this

concept is described later in the paper. When it comes to User Interface and

User Experience, the mobile team has added a third main screen that allows

the user to see a map with different potholes that have been detected. This

is a very simple screen similar to any mapping application that already exists

with warning symbols at the location of the potholes that the group has

found.

Like it has been mentioned it is very important to the user experience

because it can help warn the driver and help prevent an accident. Say for

some reason that a user’s phone is unable to warn the driver in time

because of processing issues, the phone is old and the application is unable

to work in the amount of time needed, or any other issue that occurs, the

user will still be able to receive a warning based on the fact that the camera

and model will not need to detect.
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Figure 11.7a: Mapping

11.8 Libraries Used

shared_preferences: ^2.2.2

This library is used for settings across the whole application.

camera: ^0.10.5+6

This library is used for the camera stream to detect potholes on the road.

native_device_orientation: ^2.0.3

This library was used to be able to keep the camera stream orientation lock

consistent with the rest of the application’s landscape orientation lock.

audioplayers: ^5.2.1

This library was used to have the ability to play sounds when a pothole is

detected.

tflite_flutter: ^0.10.4

This library is used to make use of the TensorFlow Lite AI model that was

trained for this application to detect potholes.
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image: ^4.1.7

This library was used for the ability to manipulate the images that are taken

directly from the camera stream to process for pothole detection.

google_maps_flutter: ^2.5.3

This library is used for the user to be able to navigate the maps using Google

Maps to discover potholes locally around their current location.

geolocator: ^11.0.0

This library is used to get the user’s current location, mainly used for storing

pothole locations in the database.

permission_handler: ^11.3.0

This library is used to get permission from the user to grant device’s access

to camera and location.

http: ^1.2.0

This library is used for the ability to call API endpoints in the application.

12 React Native vs Flutter

12.1 Flutter, what is it?

The team has looked into the possibility of utilizing Flutter for mobile

app development over React-Native. Flutter, a Google open-source UI

software development toolkit, has expanded significantly since its

conception, redefining cross-platform app development. Flutter has

experienced tremendous changes as a result of Google's goal to address the

issues of developing high-quality, visually appealing, and performant mobile
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applications. It has cemented its position as a powerful framework for

developers globally.

12.1a Early Development and Origins

Flutter was first announced by Google at the Dart Developer Summit in

2015 as a project called "Sky." Its primary goal was to provide a rendering

engine that could handle a variety of platforms, including mobile, desktop,

and web, by utilizing the Dart programming language. The project's goal was

to address the limits and complications that developers encountered when

developing cross-platform programs.

Flutter's first alpha version was revealed by Google in 2017, marking

the start of the framework's journey to becoming a renowned platform for

mobile app development. Flutter received significant feedback from

developers during its alpha and beta phases, resulting in iterative upgrades

and enhancements.

12.1b Key achievements and enhancements

With the release of version 1.0 in December 2018, Flutter reached a

critical milestone. This stable version marked Flutter's ready for production

use, indicating the framework's maturity as a framework capable of

developing high-quality apps for iOS, Android, and even the web.

Flutter's primary strength is its outstanding performance. Google has

consistently worked to improve Flutter's performance by increasing

rendering rates, decreasing app launch times, and optimizing the

framework's efficiency, resulting in smooth and responsive user experiences.
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Google has continually added new features and advancements to

Flutter, hence boosting its potential. Rich set of UI widgets, hot reload for

rapid development, and Flutter Inspector for debugging have all become

essential components for developers. Furthermore, advancements in tools

and interaction with IDEs such as Android Studio and Visual Studio Code

improved the development experience.

Flutter's flexibility outside mobile platforms have been a primary goal.

Google added web development support to Flutter, allowing developers to

compile Flutter code to run natively in web browsers. This enhancement

boosted Flutter's appeal as a comprehensive cross-platform development

solution.

The Flutter community has seen exponential expansion, with libraries,

packages, and resources contributing to the ecosystem. Google's extensive

community engagement, which included events like Flutter Engage and

projects like Flutter Create, encouraged innovation and cooperation.

Dart, Flutter's primary language, was also improved. Dart grew to

become more robust, with new features, increased performance, and

improved tools, complimenting the development ecosystem of Flutter.

12.1c Recent Developments and Future Prospects

Flutter has recently provided enhancements such as better support for

desktop platforms such as Windows, macOS, and Linux, making it a more

comprehensive framework for multi-platform development.

For example, Dart 3 is a wonderful upgrade to Flutter 3.10's most

popular programming language. The elimination of non-null-safe code in
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Dart 3 ensures a completely secure and error-free experience in this 100%

safe language and eliminates the common hazards of nullable languages.

Dart 3 also includes various language enhancements, such as the

introduction of Patterns. Because of this capacity, working with structured

data is simple. The official Dart 3 blog post contains a practical

demonstration of a function that conveniently returns two values at once.

As a result, there is no need to construct a separate class for that

purpose or to encapsulate several values within a collection.

Furthermore, new class modifiers like interface class and sealed class

provide enhanced possibilities, and the modified switch statement allows for

the systematic breakdown of structured patterns.

The application loading time of Flutter for the web has been

significantly improved.

CanvasKit, the largest Flutter for the web component, has been

reduced in size to one-third of its previous size, which is a significant feat.

Furthermore, unwanted typefaces can now be removed, lowering overall

weight. Flutter 3.10 now has full support for quickly integrating pure HTML

components throughout the application.

Furthermore, with the addition of fragment shader capability,

developers may now use well-known Dart code to build spectacular visual

effects.

This means including garbage-collected languages like Flutter in the

standard. Initial testing has revealed a three-fold increase in performance.

When WASM is released to the public, this exciting development holds

immense promise for web applications built using Flutter.
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Flutter can be used for web development in a variety of ways, from

installation to creating layouts and animations.

12.1d New Material 3 Widgets for Flutter for Web

Flutter 3.10, the most recent version, now has improved support for

Material 3. It enables you to generate color schemes using a base color or an

image. There are also substantial enhancements in different widgets like

DropdownMenu, NavigationDrawer, TabBar, SnackBar, and many more in

Material Design components.

12.1e Drawer for Navigation (Navigation Drawer)

In addition, the Flutter team has improved support for iOS/macOS.

This enables users to use Apple's Spell-checking capability within editable

text widgets, as well as a new checkbox and radio button design that

matches the Cupertino aesthetics. There are also several animation

enhancements tailored to Apple platforms.

In terms of Apple devices, this Flutter version now supports wireless

debugging directly on iPhones and iPads. This functionality, however, was

previously exclusively available in Xcode.

12.1f Improved DevTools

The development tools have also been improved in this Flutter 3.10

release, allowing developers to more rapidly examine and enhance the

performance of their apps.

New features have also been added to the memory page. The addition

of the Diff tool allows you to compare memory utilization before and after
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specific interactions to evaluate the effects of those interactions. Additionally,

heap exploration via the console has been optimized with improvements.

The DevTools user interface has been enhanced with the addition of

Material 3 widgets, enhancing usability and complying to current design

rules.

Perfetto, an open-source program, has also replaced the obsolete trace

viewer. Perfetto excels in managing large datasets, in addition to introducing

features such as pinning threads of interest, dragging and selecting multiple

timeline events, and using SQL queries to retrieve specific timeline data.

Impeller for iOS that is ready for production

Skia has been replaced with Impeller with the release of Flutter 3.10.

It has surpassed OpenGL as the primary rendering engine for iOS. This new

rendering engine improves animation performance and eliminates the vexing

shader compilation difficulties that produced janky animations and a poor

visual experience.

To achieve this result, Impeller employs a tessellation technique, which

eliminates the requirement for shared compilation during graphics rendering.

Impeller takes advantage of the cutting-edge capabilities of next-generation

GPUs to smoothly generate diverse forms and colors on the screen while

maintaining a high frame rate. It has been deliberately designed from the

ground up to specifically meet Flutter's demands.

Impeller is the default rendering engine in all iOS apps produced with

Flutter 3.10. According to the Flutter team, a preview version of Impeller for

Android is also planned for future releases, and they have also highlighted

their ongoing efforts in this respect.
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12.1g Utilizing Dart

Flutter is a framework that utilizes Dart, therefore what is Dart?

Members of Chrome's V8 Javascript engine team made Dart because they

were fed up with some parts of the 20-year-old language they had to use

every day. The group just got back from a Dart Developer Summit where

they showed off the Dart on Android project. Instead of a clear name like

"Dart on Android," Dart on Android is called "Sky." Right now, Sky (Dart on

Android) is just an open-source test, but the project has a lot of potential

compared to the usual way of making apps.

12.1h Flutter Interact

Flutter 1.12, the newest stable release of the Flutter framework, was

just announced at Flutter Interact. The most recent quarterly release is the

result of the efforts of hundreds of people both inside and outside of Google.

It includes additional speed enhancements, increased flexibility over

integrating Flutter content to existing apps, and Material and Cupertino

library upgrades. They also offer a new Google Fonts package that gives you

direct access to almost 1,000 open source font families, putting stunning

typography at one’s fingertips with just a single line of code.

12.2 Why Flutter over React-Native

Flutter, being a cross-platform solution, allows developers to create

apps for both operating systems using the same codebase. However, the

user claims that this is not the only reason why adopting Flutter makes the

development process faster and more efficient. It also has hot restart and

the well-known "hot reload" option, which allows the user to see updates in

real time without having to restart the program.
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This considerably accelerates the development process. React-Native

and Xamarin provide comparable functions, however they are slower.

Flutter's characteristics help users to save time and resources.

12.2a Widgets and Compatibility

Widgets are the building blocks upon which the whole program is built.

There are ready-made as well as customizable ones - anything in Flutter

may be constructed from widgets, according to the user. Because widgets

are part of the app rather than the platform, the finished product will most

likely have less compatibility concerns across platforms and OS versions.

Individuals who continually strive for greatness and push themselves

to realize their full potential achieve high performance.

According to the user, Flutter applications execute at a level equivalent

to native mobile apps and outperform alternative cross-platform solutions.

This is mostly because Flutter is the only mobile SDK that does not need a

bridge (JavaScript or webview) to communicate between the app and the

platform. As a consequence, the user benefits from a faster-starting

software with gorgeous, rapid animations and fewer performance issues.

12.2b Mobility

Many developers are already creating Flutter products that operate on

the web, desktop, and even TV. The features described are still in various

phases of development, but Google is more than capable of producing a

stable release. Given how essential IoT is to the firm, it is quite probable

that Flutter will continue to evolve in this way.

Internationalization and accessibility are critical issues in today's digital

environment. They guarantee that products and services can be used and
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understood by people from many nations and with varying abilities.

Internationalization

Internationalization, or the creation of multiple language and area

versions of an app, often occurs after the program has been established and

can result in a variety of inconsistencies. Flutter provides tools that make the

process simple and integrate it directly into development. Flutter also

supports accessibility by offering bigger fonts, screen readers, and better

contrast, all of which are automated from inside the platform.

12.2c Open Sourced

Open source and an engaged community are essential variables in

software development. They enable cooperation and input from a diverse

group of people. The open-source aspect of a project means that the source

code is freely available for anyone to read, edit, and share. This promotes

innovation and motivates developers.

Flutter, as an open-source platform, is free to use and has a growing

community that contributes to its excellent documentation and aids

developers with difficulties they may experience. There are also numerous

YouTube tutorials accessible for anyone who wishes to study Flutter or

develop their abilities in Google's mobile UI framework.

12.2d Shorter Time to Market

One of the most compelling reasons to choose Flutter development is

its inherent potential to substantially accelerate the time-to-market process.

With a variety of capabilities that intricately ease the software development

experience, Flutter enables developers to get their apps to market at record
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speed, all while effortlessly distributing new features and upgrades to both

iOS and Android platforms at the same time.

The efficiency provided by Flutter's uniform codebase across various

platforms is critical in shortening the time-to-market process. Unlike the

typical technique, which requires different codebases for Android and iOS,

Flutter uses a single codebase to support both platforms. The harmonic

cohabitation of code speeds up the development process by reducing the

need for redundant coding efforts, allowing developers to focus on improving

the app's functionality rather than grappling with platform-specific

complexity.

12.2e Unified App UI and Business Logic Across All Platforms

Flutter has a compelling benefit in that it allows users to construct

apps with a uniform UI and shared business logic across all platforms. Unlike

traditional native apps that require different codebases for Android and iOS,

Flutter developers may use a single codebase for both operating systems.

This not only streamlines development work but also guarantees that

the user experience stays consistent across cross-platform mobile devices.

Developers may decrease development costs, expedite time-to-market, and

provide a unified app experience to their consumers by leveraging Flutter's

features.

12.2f Hot Reloading

One of the most notable benefits of Flutter app development is its

robust "hot reload" functionality, which allows developers to instantly view

the changes they make in real-time. The feature allows developers to see

real-time modifications in their program without having to restart it fully.
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When compared to equivalent features in rival frameworks like as

React-Native and Xamarin, Flutter's hot reload stands out owing to its

incredible speed. The functionality dramatically speeds up the development

process, allowing developers to quickly iterate, test, and fine-tune their

code. As a consequence, Flutter developers benefit from increased

productivity, shorter feedback loops, and the ability to fix issues quickly,

making it a great choice for agile and dynamic development environments.

12.2g Shorter Testing Process

Flutter, a renowned mobile app development framework, has a special

edge that speeds the testing process. The cross-platform nature of Flutter

apps, which use a single codebase for both Android and iOS, results in a

decreased testing effort.

Unlike traditional native app development, which requires separate

testing for each platform, Flutter developers can complete full testing once.

The effectiveness of this method not only reduces testing time but also the

likelihood of encountering platform-specific difficulties. The user may assure

faster releases, cheaper testing expenses, and a more uniform user

experience across several devices by leveraging Flutter's accelerated testing

approach.

The reason the team has also chosen to develop the AI Pothole

Detection application using flutter is thanks to the multiple libraries and

features that can be utilized with Flutter’s framework to develop this project:

TensorFlow Lite

TensorFlow Lite is a small form of Google's TensorFlow system made for

embedded and mobile devices. It gives you tools to use machine learning
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models on mobile systems, which means it works with Flutter apps.

TensorFlow Lite models can be easily added to Flutter with the tflite_flutter

package.

The ML Kit for Firebase

ML Kit is a Firebase SDK that makes it easy for developers to add Google's

machine learning models to their apps. It has APIs for tagging images,

reading text, finding faces, scanning barcodes, and more. There is a package

called firebase_ml_vision that lets Flutter apps use the features of ML Kit.

Dart Packages: The computer language used by Flutter is called Dart. It

comes with a set of machine learning and AI packages that can be used right

in Flutter apps. Some packages, like dart-ml or dart-nlp, can help with

different machine learning jobs, but they might not be as flexible as

TensorFlow or ML Kit.

Hugging Face Transformers

Hugging Face offers cutting edge natural language processing tools and

models that have already been trained. Even though these models are

mostly reached through REST APIs, there may be community-made

packages or tools that let you use them with Flutter apps.

You can get OpenCV for Flutter here: A well-known tool for computer vision

and picture processing is OpenCV, which stands for "Open Source Computer

Vision Library." Using the opencv_flutter package, developers can access

OpenCV features in Flutter apps, which lets them analyze and change

images.

Fastai
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Fastai is a deep learning tool that makes it easier to train neural networks

quickly and correctly. Even though Fastai is mostly used in Python, there

may be active work to add its features to Flutter apps.

13 Mobile Application Architecture and Logic

13.1 Multi-platform vs Native Frameworks

The decision on which framework to use can ultimately make or break

this entire project. It is a difficult choice because each framework and

development kit will have their strengths and weaknesses that can either

accelerate the development or stop it entirely. Not only that but there are

un-written nuances and unexpected behaviors within those frameworks and

kits that can only be discovered and solved in the deepest and darkest stack

overflow thread from years prior to development.

There are many choices to make when developing a mobile

application, first being should one use a development kit that is native to the

mobile device’s operating system? Or should one use a multi-platform

development framework? The pros of using a native language and kit is that

the performance and compatibility of that application will be the best there is

compared to a multi-platform application. Building an app in native code is

guaranteed to run as it is intended on that operating system because it is

known for a fact that the language is compatible. That is one of the

downsides of using a multi-platform framework for development; since the

user writes their code in one language and have it compiled down to a native

language or run in a VM on that device’s operating system, there will be a

sacrifice in performance and unintended behaviors that arise during the

process of compiling the code to that native language, for multiple native
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languages. On the other hand there are many limits to an OS native

codebase, one being it could lack the libraries and packages needed to

perform specific tasks that the application relies on to function. Since this

application heavily relies on the logic of a machine learning model, it is

required that any framework or development kit the group uses has libraries

to integrate that model. Even if native development kits do have these

libraries there is another obstacle with native development kits and that is

the user needs to make a separate code base for each operating system.

Two of the leading mobile phones on the consumer market consist of Apple

Devices and Android Devices which have two completely different Operating

Systems that use different languages.

Now getting on with multi-platform frameworks. That was briefly

discussed the downsides of multi-platform frameworks in that there are

unexpected behaviors and performance issues within them since they have

to compile down to many different languages all from one code base. Even

with that being said, there are still many more advantages with using a

multi-platform framework. The biggest advantage is the efficiency in

development. Having to write one code base that works on all platforms is

probably one of the best tech innovations since the Motorola Razr flip phone.

This advantage will reduce development time by fifty percent and that will

mean there is more time to fine tune and test the model integration so it

functions as intended. This advantage alone is enough to unanimously

choose the multi-platform framework route. If the group was an organization

consisting of multiple mobile development teams and had more than a dozen

employees, it would be logical to create multiple code bases for mobile

development. But the group is a team of 6 developers and the mobile team

consists of 3 developers. It is not logical to attempt to create multiple code

bases that perform the same functions. Besides that, the two leading



107

multi-platform mobile frameworks in the industry both provide packages and

libraries to integrate trained AI models into a mobile platform.

13.2 Logic and Architecture

Even though web and mobile development may seem like a simple

branch of the software development industry, mobile applications and their

architectures can circumstantially be very complex. When not organized

properly, the long-term development of a web or mobile application will

eventually fail due to many holes in the structural integrity of the codebase.

The application will not quite literally fail, but there will be unavoidable

roadblocks in the future of development and an application will fail to be

scalable for the business or organization that designed it. When designing

architecture, there are 3 main principles to follow which are: SOLID, KISS,

and DRY (marwaMejri, 2023).

SOLID is the first principle and it is an acronym for the five

fundamental object-oriented design principles that were originally created by

Robert C. Martin, also known as Uncle Bob (Mehta, 2021). “S” stands for

“Single Responsibility Principle” and it states that a class should have no

reason to change. What that means is classes should be very small and

handle only one single responsibility (Mehta, 2021). In a general sense, a

class should only take up about one digital screen of code. This allows

classes to exist as an abstract tool used in the codebase; if a class needs to

be edited, chances are there are too many different responsibilities given to

it and it should be split into smaller classes. The “O” stands for “Open-closed

Principle” which relates to single responsibility in that objects should be

available for extension but will deny any modification (Mehta, 2021). When

working in object oriented programming, it is important to utilize inheritance
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and this rule focuses on the proper way to use inheritance. If a subclass

extends a parent class, it should add attributes and methods that properly

align and seamlessly build on top of that parent class, without any need for

modifying that parent class on a codebase level or during runtime.

Open-closed highlights the importance of using private variables and

methods when designing each class. “L” stands for “Liskov Substitution

Principle” which is the principle of keeping consistency throughout

inheritance. Any parent class that has extending subclasses, should be easily

replaceable by a relevant subclass without causing any system errors. This

entails designing subclasses to function and behave in the same exact way

as the parent class. “I” represents the principle of “Interface Segregation”

which also relates to Single Responsibility where interfaces should be small

and concise. Classes that implement interfaces should not need to

implement a large interface that has many methods not being used by that

class. Instead of having one main interface with loads of service methods,

developers should create multiple interfaces with more refined methods for a

specific purpose so that they will individually be used by different types of

classes. This is a great construction of proper abstraction; if one interface

needs to be modified, it will only affect a small number of classes. “D”

stands for “Dependency Inversion Principle” which says higher level modules

should not depend on lower level modules, each of them should utilize

abstraction (Mehta, 2021). This principle relates to the other principles in

emphasizing abstraction in order to build a modular system. Large scale

classes and small scale classes should be decentralized and not have a

dependency on each other whereas if one were to change, it will not directly

affect the other.

KISS is another software design principle which, in some ways,

contradicts SOLID. KISS stands for “Keep it Simple, Stupid” and as one may

assume, its primary focus is to use processes that ensure developers are not
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overcomplicating the codebase. Which does contradict SOLID in ways

because SOLID has many principles that require keeping class files small and

creating a lot more of them so they have specific responsibilities. Well a

codebase with over two hundred class files is not one that is labeled as

simple. It does however agree with SOLID because the purpose of it is to

keep classes and other codebase files very small so they are easily readable

and serve one specific purpose. KISS also calls for removing redundant

methods in the codebase or relocating them where they are useful and also

eliminating code clutter (baeldung, 2023).

The third major principle of architecture is called DRY. DRY stands for

“Don’t Repeat Yourself” and the overall purpose of this principle is to reduce

as much repeated logic as possible from the codebase. This does not refer to

repeated code on a syntax level, but is more of a critical thinking and

algorithmic perspective on classes and methods. A perfect beginner’s

example of this is something all developers learn the first time they are

introduced to functions in programming. The purpose of a function is to write

a specific process of code that has a predicted known input and an expected

known output based on a certain logic. The purpose of writing a function is if

there are multiple areas of the codebase where certain commands are

repeated and identical to one another, so a function is created and called in

those areas to reduce code clutter.

While there are many different methods of designing architecture for a

mobile application. This section will focus on the proper structure and

organization of a Flutter application, more specifically, a Flutter mobile

application. The method to design architecture for the AI Pothole Detection

mobile app is called clean architecture. Clean architecture focuses on a

principle called separation of concerns (Flutter Guys, 2023). This involves

dividing the software into layers that are designed to be modular. Which

allows for a simple development process since each layer can be developed
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individually and updated or reused efficiently. The overall goal of clean

architecture is to be scalable, readable, testable, and easily maintainable.

From a top-down perspective, a Flutter application will have 3 main layers.

These layers are the Data, Domain, and Presentation layer. The Data layer

will not be discussed in this section of the design document because it is

unnecessary for the primary function of the team’s bare bones application.

However it is a requirement for the stretch goals of the AI Pothole Detection

project.

13.3 Presentation layer

The presentation layer is the simplest layer of the application because

it contains all of the visual aspects. The presentation layer is where all of the

app’s User Interface elements reside such as pages and widgets that exist

within those pages. The presentation layer does however contain a lot of

logic with state management. State management is the process of managing

the states of each page and widgets within those pages so the user interface

items can be updated upon user interaction. State management is also

responsible for triggering requests to other application layers such as the

domain layer or the data layer, when a specific state is achieved for a certain

widget. The second responsibility is more of a circumstantial event and not

every widget will be required to make requests depending on its state. State

management is a big deal in application development for every kind of

mobile application, not just Flutter. There are many ways to perform state

management in a Flutter application, the most efficient way is to use a state

management library. With that in mind, there are many different state

management libraries to choose from and they all handle state management

differently. The entire goal of state management is to use abstraction to

remove the current states from the widgets and relocate them in their own

node so that they can be accessed by other widgets and other layers of the
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application. For ease of use, the team will use Flutter’s riverpod widget state

management package. Riverpod works on a publisher and consumer system.

Riverpod has nodes called providers which will hold the state of a specific

widget or grouping of widgets and will continuously be updated by those

widgets. Then from there a developer can create a consumer to request the

state of a widget from that provider. This way if widgets from other classes

or other pages rely on the state of a certain widget, they will have global

access to that state.

The entire app on a foundational level will have three pages in the

presentation layer: A home page, camera view page, and a settings page.

The home page will be a pretty basic page with static information and one

button which will allow the user to navigate away from the page. The home

page will not have any state management within it due to its simplicity. The

camera view page is the bulk logic of the application. It will contain a few

widgets. The first widget is the camera view, this widget will fill the entire

screen, excluding the navigation bar, and will provide a live camera stream

of the smartphone’s rear camera. This camera stream is important for the

viewer to understand how the app turns the phone into a dash cam and it

will also help visualize where potholes are spotted, using these next widgets.

The other two widgets will be banners that pop up on either side of the

screen when a pothole is detected. If a pothole is detected on the right side

of the camera view, it will pop up on the right side of the page, and vice

versa for the left scenario. There will be a lot of state management within

this page. The camera view widget will have a provider for its states which

will also connect to the model integration class that exists within the domain

layer (that will be discussed later in this document). The two banner widgets

will consume from the camera view’s provider and their states will change

based on the state of that provider. The third page will be a settings page.

This page will have a collection of widgets that will be a collection of toggle
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switches, navigation buttons, and slider bars that will control the behavior of

the app’s features. It is uncertain on how many widgets it will have at the

end of development but here is a quick list of the buttons deemed necessary

in the design phase. There will be toggle switches for on screen pothole

notifications and sound alert notifications, a slider bar for sound alert

volume, and a button to navigate back to the home screen which will double

as a more information screen. State management for this state will be a

settings provider that will wrap all of the widgets on the settings pages

mentioned above. Every widget on the app that relates to any setting in the

settings page will consume the states that exist in this settings provider, so

that their behaviors reflect those states accordingly. For visual

representation of this layer, There is a diagram included in this document for

reference, in the Figure 13.3.1 below.

Figure 13.3.1: Presentation Layer Diagram of Mobile Application
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13.4 Domain Layer

The domain layer is an abstract layer that has no dependency on other

layers like the presentation or the data layer. This layer contains all of the

heavy logic of the application and one might say this is the bread and butter

of the application. The domain layer will consist of class files that handle

different aspects of logic of the application. The purpose of the domain layer

reiterates the standards of clean architecture in that it should be modular,

scalable, readable, testable, and easily maintainable (Flutter Guys, 2023).

The domain layer will be written entirely in dart and not contain any Flutter

library code. The domain layer consists of three main parts: entities,

repositories, and use cases.

Entities are essentially the business objects of the application and the

most high-level rules end up being encapsulated within each entity (Max on

Flutter, 2023). To give an example of how one would picture this, entities

would be very similar models that are class objects in an Object Oriented

web application like one built in Java’s SpringBoot. Entities should only exist

to hold values of certain models and interact as objects, they should often

not perform any implementation such as logic for said entities, that is the

responsibility of use cases. The only case when an entity can contain logic

within it is if that logic handles how that entity object can be modified or

how it behaves when being used in a use case.

Repositories are an abstract collection of entities within the application.

The repository is similar to a service layer or a controller layer in a web

application, where it aligns with entities and allows CRUD operations to be

performed on the entities that are stored in the data layer (Max on Flutter,

2023). A repository is an interface for an entity and they have a single

responsibility which is to provide and manipulate data for the entity that

implements it during runtime.
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Use cases handle actions performed within the application during

runtime (Max on Flutter, 2023). Use cases are classes that encapsulate rules

and procedures of entities so that they can be manipulated and evaluated

within other parts of the application. They are similar to repositories in that

they are specific to certain entities and their repositories but they handle the

logic of specific scenarios that the entity will encounter with user interaction

during runtime.

With that being stated, the AI Pothole Detection system’s back end

logic is fairly short and sweet. While it does perform an intense amount of

precise calculations, those are all handled by the Yolo model that will be built

by the machine learning team. With that black-boxed, the mobile team will

create one entity with a repository to go with it, as well as many use case

classes to handle actions. The entity for the neural network will hold all the

values of the model, whether that be stored in the codebase itself or in a

database remotely. Then a repository will be created which will handle the

logic of loading and running that model. Live camera stream footage can

then be inserted into that running model during runtime. The team will then

create several use cases that will be called by the repository and each use

case will have a specific action to return and manipulate the state of the

widgets in the presentation layer based on the values returned by the model.

To wrap up architecture, an activity diagram (Figure 13.4.1) and a block

diagram (Figure 13.4.2) are provided below to give a visual representation

of how the logic will work with entities, and use cases of each feature in the

codebase. As well as a higher-level overview of each system and how they

interact. Keep in mind these diagrams are designed for the stretch goals of

the project and will contain some nodes not discussed in this section.
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Figure 13.4.1: Activity Diagram for Mobile App

Figure 13.4.2: Block Diagram for Mobile App
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13.5 Model Integration

Integrating the Yolo model into the flutter application is the most

important part of this project. Without model integration, this project serves

no purpose whatsoever, this integration is the mobile team’s biggest hurdle.

Unfortunately there are only a few common methods of implementing a

pytorch machine learning model in a flutter application which limits the

options of the mobile team in some ways. The best method discovered so far

is to utilize the flutter_pytorch package to run the model.

First, the team will install the flutter_pytorch package and list it on the

yaml file containing all of the codebase dependencies. Then once the

foundation of the app is complete, and the model is trained, the domain

layer of the camera page feature will contain a model entity. Then specific

variables need to be declared in order to load the model. Once the variables

exist, a load method will be created in the camera page repository. Once the

load method has been created, it will be called in the init_state() method of

my_app() in the main class. This will ensure the model loads on startup.

Once that is done, all that is left to be created is a pothole_detection()

method that will take the camera_feed as a parameter and run the model

with the frames of the camera feed. Then the logic of the function will call

use_case methods to edit the states of the alert widgets depending on the

output of the model. Figure 13.5.1 below describes the use case diagram for

the user and database interacting with the mobile app.
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Figure 13.5.1: Use Case Diagram for Model/Mobile Integration

The team ended up implementing multiple different AI models into the

mobile application. Sadly, only one model was able to reach the minimum

required threshold of 5 frames per second. Mobile Net was this model and

with the fact that this is the smallest model we could afford as well as the

implementation of quantization the detection algorithm efficiency of the

model dropped drastically. After trying multiple models and being

unsuccessful with being able to get performance that would be considered

acceptable the team ended up moving to a desktop application that would

utilize a laptop in order to run a larger model in order to get the

performance we required.

13.6 File structure

Flutter file structure is quite different from many other application

development frameworks and are triggered from the repositories

circumstantially on a case-by-case basis. That will wrap up all of the files in

the codebase and how they are structured.



118

14 Laptop Program

14.1 Motivation

The laptop program was developed after the mobile application

specifically because the mobile application was not able to run an acceptable

model in real-time harming the model performance and causing harm to the

device itself through overheating and throttling. Therefore, the team decided

to develop a laptop-based program in order to have a similar experience as

the mobile application, but be able to access the hardware power available

on a laptop. The team also decided that, because laptops are not easily

deployable by normal drivers, the project would be more oriented towards

municipality usage. Therefore, the laptop program would still contain the

same core functionality as the mobile application did (real-time detection,

directional alert system, lane detection, etc.), but the mapping system would

be more robust and have more features than the initial mobile application

was planned to include.

14.2 Hardware Used

The primary testing hardware the team used for this application was a

Dell G5 Gaming Laptop with an RTX 2060 GPU. This device was used as

Nicholas Gray, the head of the AI team and the person developing the laptop

program, already owned the device and knew it would be able to run the

YOLOv8 model in real-time. However, as the device does not contain a GPS

antenna, to gather the GPS coordinates of the potholes during live testing, a

Samsung Galaxy S10+ was also used concurrently, also owned by Nicholas

Gray.
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14.3 Language and Libraries

The laptop program was implemented entirely using Python because of

the requirement to use an AI model and the speed of development and

deployment compared to other languages, as discussed previously in the AI

section. The main GUI was developed using CustomTkinter, which is an

extension of the original Tkinter GUI library developed for Python.

CustomTkinter’s main advantage is that it provides a more modern looking

UI while preserving the original functionality of the Tkinter library. The

motivation for using the Tkinter library over other Python GUI libraries, such

as PyQt, was due to the need to make the laptop program in less than a

week. Therefore, the team decided to use the library they were most familiar

with that they knew would work for the program. The advantage of using

Tkinter is that it is very easy to initially set up and use, given its simple API

structure. However, the main disadvantage is that it is quite antiquated and

difficult to use to develop more complex applications, which the team

encountered while developing the laptop program.

For the deployment of the AI model, the team used Ultralytic’s YOLO

library, which allows for very simple loading and inference of YOLO based

models. For streaming images into the model and manipulating them for

detected potholes and later alerts, the team used OpenCV. OpenCV was used

because it is the most popular library for image processing and computer

vision tasks in Python, and integrates well with the YOLO library.

For displaying the map in the program, the team used TkinterMapView,

which is a library designed to allow users to add a simple Tkinter map

component to their code (Schimansky, 2024). TkinterMapView allowed for

direct integration of OpenStreetMaps into the application, and allowed for

potholes to be added to the map[ as markers, left and right click map
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functionality, bounding box selection functionality, and tying metadata to the

markers on the map.

For geolocation, a smartphone has to be used with the IP Webcam app

(Khlebovich, n.d.). This app allows someone to convert the smartphone into

a network camera that can be accessed from a HTTP IP address. This can be

potentially used as a camera source for the laptop program by streaming

from the camera to the laptop. The app also can be enabled to share the

GPS location of the smartphone, which is accessed from an API endpoint on

the same IP address as the camera stream. This was the primary use of the

app for the laptop program, as there were no other convenient means to

gather the GPS coordinates. The team explored using a USB GPS antenna,

but the device used did not work and was returned.

For finding the address of the potholes, the GeoPy library was used,

with the Nominatim system used to take the location and find the closest

address. This system was used as it is a free API endpoint as it is relatively

simple to use directly through the GeoPy library. The downside of using this

system is that it is less accurate in its reverse geocoding compared to a

Google Maps service, and provides an inconsistent return of the address. For

example, some locations will return a direct address, but others will just

return the street name or just the county.

14.4 Overall System Design

Figure 14.4.1 shows the overall activity diagram for the laptop

application. The user gives a video feed directly to the AI model. As the AI

model operates, it looks to see if it detects any potholes. When it does, it

feeds that to the side detection system. If the pothole is within the lane, it

detects whether it is on the left or right side. It sends this directional
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information to the alert system, which then displays an alert to the user. At

the same time, it pushes the pothole coordinates to the database via an API.

To get the GPS coordinates of the pothole, the program fetches the GPS

coordinates from the connected smartphone using the IP Webcam app. The

side detection system will also push up an image of the detected pothole so

that users can later see what the detected pothole looks like. When using

the mapping program, the map fetches the pothole locations from the

database. This map displays the potholes as markers, and links the images

directly to the potholes. The user can also add and delete potholes directly

from the database using the map. Finally, the user can download the

potholes and their locations and addresses from the map itself, if they

desire.

Figure 14.4.1: Activity Diagram for Laptop Application
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14.5 Initial Startup Screen

When the program is first started, an initial start screen is shown with

options to select the video feed and the used AI model, as seen in Figure

14.5.1.

Figure 14.5.1: The initial laptop start screen.

For the video feed, the options are a video stream and the available cameras

connected to the device. For the stream, the URL is expected to point to a

continuous MJPEG stream, which OpenCV can read directly. The

disadvantage of using a video stream is that the stream will be at a constant

30 FPS, while the AI model will lower that, leading to a buffer in the video

stream. This buffer means the program will lag behind the live stream,

making it not real time. To counteract this, the live stream has the queue

limited to 1 frame, but this caused bugs elsewhere in the program. For the

cameras, the system finds them by cycling through each camera by its index

and seeing if OpenCV can open them. This is a relatively direct approach,

but the disadvantage of this is that if there is a camera opened by another

program, OpenCV won’t be able to open it and so it and all cameras with a

later index will not be listed. This is particularly problematic if the laptop

integrated webcam is being used, as that often has a camera index of 0.

Therefore, this program should be used with no other program possibly

using the camera.

For the model, the program looks for any “.pt” file that is in its local

directory. The models it finds have their direct paths saved internally in the

code, which allows for other models to be loaded later in the program if the
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user wishes to switch which model they are using. Currently, the only model

available is “yolov8s_pothole”, which is the YOLOv8 model the team trained

that performed over the YOLOv5 and MobileNet models.

14.6 Video Feed Page

After pressing start in the initial window, the main program will load.

The main program has two tabs, “Video Feed” and “Map”. “Video Feed” is

where the pothole detection occurs and is the main page of the program. In

the Video Feed page, there are three options: Pothole Detection, Lane

Setting, and a Settings button. The Pothole Detection toggle turns the AI on

or off, which allows the user to set up the program without having the

possibility of sending any false positive potholes up to the database during

initial setup. The Lane Setting switch turns on the visibility of the lane

detection system, which is running at all times but has a default

configuration that can be adjusted by the user. The purpose of the lane

detection system is to focus the area of possible potholes being detected to

an area specified by the user, which is expected to be the road the user is on

or the lane itself. The following section will go into the lane detection system

and its interaction with pothole detection in greater detail. The final option

on the Video Feed page is the settings button, which opens a separate

settings window that allows for adjusting settings for the AI model, alert

system, and video feed. Figure 14.5.1 shows the entire Video Feed page and

a demonstration of the lane detection system being set up.
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Figure 14.6.1: View of the Video Feed Page

14.7 Lane Setting System

As can be seen in Figure 14.6.1 and mentioned previously, there are

controls for setting up a lane detection system. The lane detection is

controlled through four points directly displayed on screen that form a

quadrilateral around where the user is interested. Internally, this

quadrilateral is vertically split into two further quadrilaterals to detect the

“left” side and the “right” side of the detection plane. This “left” and “right”

side was created in order to fulfill the need for having directional alerts to

tell the user which side of the lane the pothole is on. This does mean that

the alert system is primarily designed with the idea that the lane setting

system will be set up on just the lane itself, but the system does not prevent

a wider view from being set.
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As potholes are being detected from the live video feed, the center of

the bounding box of each pothole is found. If the center is within one of the

quadrilaterals mentioned previously, then an alert is sent and the pothole is

uploaded. The point is detected if it is inside the quadrilateral by loading the

four points of the quadrilateral as a polygon, and then doing a point test to

see if the point is inside. This point test is done by drawing a ray from the

point out of the polygon. If the point hits the polygon an odd number of

times, it is inside.

14.8 Alert System

For the alert system, it is similar to how it was done for the mobile

application. After the program detects a pothole on either the left or right

side of the lane, it internally sets a flag to display the left or right visual alert

for a set number of seconds. The system may also play an audio alert, if the

user has it turned on. During that time, a red box is displayed on either the

left or right of the screen, similar to how it is done in the mobile application.

At the same time, the program sets a different flag to ignore any further

alerts from the program for that side of the lane for that many seconds. This

does not prevent the model itself from doing the detections, nor does it

prevent the bounding boxes from being displayed, but it does prevent the

alerts from calling the API endpoint for pushing to the database. Like in the

mobile application, the purpose of the delay is to make sure that the

program is not pinging the API endpoint multiple times for a single pothole

that it may see across multiple frames. The delay system is also set up to

make sure it doesn’t push for a cluster of potholes. After the alert expires,

the visual alert is no longer shown and the system allows for alerts to be

sent from that side of the lane again.
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14.9 Pothole and Image Uploading

After a pothole is detected and the lane detection system confirms that

it is within either the left or right side of the lane, the uploading system

starts. First, the program calls the API endpoint from the IP Webcam app in

order to fetch the phone’s GPS coordinates, which should be near the laptop

or the phone stream being used to view the road. The API endpoint looks

something similar to “http://<IP Address>:8080/gps.json”. This endpoint

returns a JSON response in the format of

{“gps”: {“latitude” : X, “longitude”: X, “altitude”: X, “accuracy”: X},

“network”: {“latitude” : X, “longitude”: X, “altitude”: X, “accuracy”: X}

, where “gps” is the GPS coordinates from the GPS antenna on the phone,

and “network” is the GPS coordinates of the network device the phone is

connected to. In the code, the program first checks to see if it can access

the longitude and latitude from the “gps” return. If it exists, the longitude

and latitude are saved. Otherwise, it similarly checks for the longitude and

latitude in “network”. If neither can be accessed, then the program uses a

default set of coordinates as the pothole location.

After the GPS coordinates are returned, the program POSTs to the

pothole upload API endpoint. This endpoint will either create a new pothole

at that location, or increment the count of an existing pothole in the

database. The way this is determined is if the pothole is near another

pothole that already exists in the database. If the pothole being uploaded is

within 150 meters of an already existing pothole, then that pothole’s counter

is increased; otherwise, a new pothole resource is created in the database.

The API endpoint then returns an ID that represents a pothole in the
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database now corresponding to the GPS coordinates POSTed if the upload is

successful.

With this pothole ID, the program then calls on the image upload API

endpoint. When the upload system is called, the program passes an image of

the current frame of the video stream to the system, which is expected to

contain the actual pothole in the image. This image is then resized to a

quarter of the original, then encoded into the PNG format, and then finally

encoded using Base64 encoding. The first encoding step is done so that the

image can be stored on the Supabase database directly as an image. The

second step is done in order to make it easier to upload the data to the API

endpoint. The thought process behind this was that uploading the image

data directly makes the endpoint more complicated and there might be

slowdowns with uploading the image. On the other hand, using a base64

encoding means the image can be represented as a string and be uploaded

in a JSON, which makes the API endpoint more understandable. The image

upload API endpoint uses the encoded image and pothole ID as JSON inputs,

and returns a response code for if the upload was successful or not.

The entire uploading system is called on a separate thread from the

main program. This is done because calling the APIs is a blocking call on the

main thread, so if they were not called in a separate thread, the entire

program would freeze while the upload system completes. This would be a

major problem if any of the API endpoints timed out, as this would cause the

program to freeze for 30 seconds or more. This system also allows for

multiple API calls to be made in the background without any concern for

them blocking each other.
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14.10 Settings

Like in the mobile application, the laptop program has several settings

for the model, alert system, and the video stream. These settings appear on

the Video Feed menu when the Settings button is pressed, which spawns a

separate window. This window does not stop the main program, which allows

for the settings to be adjusted in real time while the program operates on

the road.

14.10.1 Detection Settings

On the detections tab of the settings page, there are three main

settings: confidence, show detections, and model. Figure 14.10.1

demonstrates what the Detection tab of the Settings window looks like.

Figure 14.10.1: Detection Tab of Settings window

The confidence setting controls the minimum confidence of the model

in order to return a pothole. In object detection, a bounding box not only

returns the object location and class, it also returns a confidence score on

how confident it is on the detection. This confidence score can be used to

filter out any predictions that the model is not confident in, which are often

false positive predictions of potholes. The default confidence is 25%, which
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through testing was found to detect most potholes and not detect too many

false positives. However, on certain roads where false positives are

prevalent, the confidence can be increased, decreasing the number of

potential false positives while at the same time increasing the chances of a

real pothole being missed.

The Show Detections toggle simply controls whether or not the

bounding boxes are displayed on the video feed. The bounding boxes are still

detected and used internally for the alerts and upload systems, but it may

be possible that the user does not want to see the detections themselves.

The final option, “Model”, allows the user to change which AI model

they are using from a dropdown. As described previously, the program first

scans through all the models that can be seen in the local directory of the

program, specifically looking for the “.pt” files. The refresh button to the

right will perform the same action and look for newly added models. When

selecting a new option in the dropdown, the program will then unload the

previously used model and load the new model, unless the new model

selected is the same as the current model.

14.10.2 Alert Settings

The alert settings are similar to the ones found in the mobile app, but

with some added functionality. First, the alert sound system is a single on/off

toggle, instead of a volume slider. This was done because Python does not

have a convenient means to control the volume of an audio file, and instead

just plays it at the volume it's at. The next setting, alert opacity, controls

how opaque the alerts appear on the Video Feed page, similar to the mobile

application. Alert delay controls how long the alerts display for, and control

how long the program should wait before it can push any detected potholes
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to the database. Finally, Alert Width controls how wide the alerts are

horizontally on the Video Feed page. This setting was added because the

user of the program may not want to obstruct the view of the video, or they

may want to have clear visibility of the alerts. Figure 14.10.2 shows the alert

tab in the Settings window.

Figure 14.10.2: Alert Tab of the Settings window

14.10.3 Video Settings

The video settings is the final tab in the settings window that includes

miscellaneous controls for the video feed. The first setting controls whether

the FPS is displayed in the top left of the video feed for debugging purposes.

The Show Lanes setting controls whether the Lane Detection system ever

displays itself, regardless of the user turns it on or off. Finally, the Cameras

dropdown, like the model dropdown, controls which video feed is being used.

The refresh button works like the initial start of the program where it cycles

through the available cameras in ID order, and stops once it can’t load one.

Selecting a new option in the dropdown changes the camera. For the stream

selection, if it is selected, a pop-up window appears, asking the user to type

in a URL for the program to use as the camera feed. Figure 14.10.3 shows

the Video tab of the Settings window.
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Figure 14.10.3: Video Tab of Settings window

14.11 Mapping Page

The map page is the second main component of the laptop program.

The map was primarily designed around the use case of governments and

municipalities, as it directly allows the user to control the potholes that

appear on the map and add / remove potholes directly. Figure 14.11.1

shows an overview of the entire program, which the individual components

will be talked about in the following subsections.

Figure 14.11.1: Overview of Map page
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Like previously mentioned, the map is displayed using TkinterMapView,

and when the potholes are loaded onto the map, each pothole also gets a

tab in the side bar that allows the user to easily delete potholes. There is

also a refresh button for the map, which clears all the existing potholes from

the program cache and calls the API again to get fresh potholes. This is

useful for someone else if running the program and adds new potholes, or

when after doing collection the user wishes to view the newly added

potholes.

14.8.1 Pothole Images

A useful feature of the map is that the pothole markers also have the

images from the database associated with them. When a user clicks on one

of the markers, the image is displayed over it. This allows the user to check

if the pothole was properly detected by the program, or if the detected

pothole is really a false positive. Viewing the image also allows the user to

view how bad the pothole is, allowing municipalities to make judgements on

which potholes are the most important to address.

14.8.2 Bounding Box Marker Selection

Another useful feature of the map program is the ability to select

potholes using a bounding box. The user can draw a bounding box over the

map by holding control and dragging their mouse over the map. After the

user lets go of the left mouse button, a box is generated and the potholes

inside the box are highlighted. The highlighted potholes’ markers and their

associated side labels are highlighted blue. Once the user selects the

potholes, if they choose to generate a report, then only the selected

potholes are used in the report. To clear the selection, the user just has to

move the map and the bounding box selection disappears.
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14.8.3 Adding / Deleting Potholes

As another feature for municipality use, the user of the laptop program

can add and remove potholes directly from the map page. To add potholes,

the user can right click on the map where they would like to add the pothole,

which spawns a small right-click menu in which “Add Pothole” can be

selected. This sends an API call similar to the one in the Video Feed tab to

upload a new pothole. If the upload is successful and generates a new

pothole, then the marker is added to the map. If the pothole is merged with

another existing pothole or fails to upload, the marker is not drawn on the

map. The purpose of this feature is to allow users / municipalities to add

potholes they receive reports of but have not detected in their driving. This

is added to minimize the inconvenience of having to drive out and detect

every single pothole, especially if a report of one they missed is received. It

should be noted that this feature does not provide any images of the added

pothole, and so no image will be displayed when the marker is clicked.

For removing potholes, they can be removed simply by pressing the

red X button on the side view for whichever pothole the user would like to

delete. When this button is pressed, an API call is made to the database to

remove the pothole with that ID. If the API call is successful, the marker is

then removed from the app. The purpose of this feature is to primarily

remove any false positive detections from the database and map. The false

positives can easily be checked by clicking on the marker and viewing the

image to see if there is actually a pothole in the image. Another use of the

delete functionality is to remove potholes that have been patched, and

therefore should no longer be in the database.

14.9 Report Generation

The final feature of the map page in the laptop program is the report

generation. When the user presses the Generate Report button, the program
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first goes through each pothole and performs reverse geocoding on it to find

the closest address to the pothole location. If it cannot find an address, it

simply returns the longitude and latitude as a string. The tool used for

reverse geocoding is GeoPy with Nominatim. After the addresses are found,

they are all added to a CSV file along with the pothole ID and its longitude

and latitude. The user then has the option to set where the CSV file is saved

and what the file name is.

This feature works directly with the bounding box selection feature.

Like mentioned previously, if there is a bounding box selection on the map,

then the report generated will be made with only the selected potholes. If

there is no selection, then every pothole that is on the map - and therefore

every pothole in the database - will be saved into the report. This was added

to allow the user to generate a report on only potholes they specifically are

concerned with, or to know where every pothole is in terms of its address.

15 Database and API

15.1 Introduction

Beyond creating an initial AI model capable of detecting potholes, we

had a suite of extended features surrounding a database and API. These

goals were referred to as “stretch” goals originally, and largely surrounded

the implementation of the mentioned backend components.

This part of the project had two parts: the backend setup and the

frontend enhancements. Many of the downstream frontend enhancements

are mentioned elsewhere in the document, so we will largely be focusing on

the backend setup and design choices under the hood.
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The backend is largely composed of two parts: the database and the

web API. The database the team decided to choose is a PostgreSQL database

provided by Supabase. Supabase provides a fully kitted client library with all

the needed tools for implementing an API that can populate and manage the

database. Additionally, Supabase manages the hosting of the database,

authentication, and serverless services, alleviating the need for

micromanagement of deployments. Part of the group's ethos is leaning on

established tools and companies to make tasks easier, and choosing

Supabase is an excellent implementation of this concept.

Supabase uses a PostgreSQL database, a relational database with

many useful features. As this project is managing some amount of user

information, securing it is a primary concern. The database’s primary

purpose is to store identified potholes as marked by the AI model. This task

is not a simple one. An immediate problem is the possibility of error in the AI

model where a pothole is marked “real” when it is not. To a degree, this

event is inevitable with enough usage in the field. No AI is “100%” accurate

and errors are possible even in the most sophisticated of AI models.

Potholes are a collection of many unconfirmed potholes submitted by

multiple users. Crucially, each identified Pothole has a stored “reports” value

that keeps track of the number of reports. Filters can be set on fetch that

allow for filtering based on the number of reports, allowing for filtering out

potential unreliable reports. The specifics of this implementation will be

explored when examining the entity-relation diagram.

Once the layout of the database is established, an API must be

implemented to interact with it and perform the requested actions on those

resources. This API will have endpoints for the frontends to ping when it

detects a pothole and to upload an image of the detected pothole. Changes

made in this department include both creating a new web frontend, and
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modifying the desktop app to directly leverage the new database and API.

The primary of these data visualization tools will include a map of pothole

detections, which users will be able to browse and examine in detail. The

team believes providing this functionality increases the potential use-cases

of the system, as commuters can view where on their routes they can

expect to find the most potholes and municipalities have more control over

dispatching repair teams.

With all the goals for the backend laid out it should be expressed as to

why these were stretch goals in the first place. There are a number of

reasons for this, one of which is to ensure a robust foundation before moving

into building any system on top of it. As explored previously, designing AI

models and configuring them for field use is a difficult process. It can be

months of fine tuning, retraining, and configuration before a trained AI

model can be considered “complete”. This can be a labor intensive process,

requiring multiple team members and may potentially halt development

entirely if the training of the model is unsuccessful. The team does not wish

to cut corners in the AI training process, and assigning these goals as

“stretch” is a way to ensure that. The core project is around creating an AI

model to detect potholes, and establishing an app that can use it on

smartphones. Achieving this goal ensures that this team’s project has

accomplished something meaningful, and should be the utmost priority

during development. That does not mean greater value is placed on the AI

over the secondary applications, it simply means the team recognizes that

this must be treated as a project with discrete sequential parts, and treat it

as such.

The team is confident that these stretch goals will be implemented in

some form. Ideally, both will be implemented in their entirety, but as

reiterated above, this is secondary to the primary goal of developing an AI to

detect potholes and an app to run it. Despite this, to ensure the possibility of
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developing these stretch goals the team had a plan for transitioning the

team to develop the stretch goals once the initial AI and mobile application

have been developed.

On the mobile team, they will be free to work on other things once the

initial app is developed. Since the model will likely be the main item

receiving sporadic updates, the mobile team may be able to downsize or

transition to incorporating the stretch goal functionality into the mobile app.

This may take the form of most members of the mobile team transitioning to

API and Database development, as those will be required before the mobile

team can begin integrating functionality.

The next sections will explore the stretch goals in depth, examining

their technical requirements, challenges, and the plan for implementing

these systems.

15.2 Database Overview

The most important component of the stretch goals is the database.

The database is the foundation for the entire stretch goal project, enabling

the group to permanently store potholes detected by the AI. This will take

the form of a PostgreSQL database hosted by Supabase, for reasons which

will be explained below. The PostgreSQL database will manage several

tables, primarily one for “user-submitted” potholes, and another for

“verified” potholes. A relationship between these two tables exists, where

“verified” potholes have many user-submitted potholes, and user-submitted

potholes are associated with one verified pothole. The information stored in

each table will contain locational data tying the pothole report to a real-world

coordinate, which can be used for assembling verified potholes or associating

verified potholes with coordinates.
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The primary purpose of the database is to store pothole information

associated with real-world geographic coordinates, so the database can

validate and report accurate pothole information. The database will be

dealing with a large amount of user-generated pothole reports, most of

which will likely be duplicate reports. Providing the infrastructure for

consolidating these user-generated reports into a source of truth .

is essential to creating a database with some form of meaningful data. In

this section, there is less concern with the “how” of accomplishing this

discrimination, but with providing the necessary database resources to make

the process simple and clean.

It also should be noted that creating this database can be seen as a

substantial accomplishment, as simply having tabulated information of

pothole reports can be very valuable to existing public entities for their own

dissection. AI models could be trained to identify underlying causes for

potholes using this dataset, or be processed statistically to generate insights

into where potholes form, and how long they remain unrepaired. Creating

the infrastructure in supporting this data collection is an essential first step

in making the extended goals of this project a reality.

15.3 Supabase

A recurring provider that will be used in the stretch goals is Supabase.

Supabase is a “Backend-as-a-Service” provider that specializes in simplifying

backend functionality by providing a premade authentication system,

configured database, and intuitive dashboard. Supabase is an open-source

project, and can be self hosted using traditional means, or managed by

Supabase for a cost of $20, or for free with restrictions. Supabase was
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founded in 2020 as an alternative to Google’s Firebase, with a few key

differences explored later in this section.

There are several reasons the team is choosing to utilize Supabase for

this project. A major one is ease-of-use. Supabase manages all hosting for

the database, which is preferred over manually setup and management.

Managing deployments can be a hassle and failures may lead to a

catastrophic loss of data. It would be most wise to offload these concerns

when possible, so allowing Supabase to manage hosting of the database is a

good choice. Supabase offers a generous free tier, allowing unlimited API

calls and 500MB of database space. This should allow the group to get up

and running on a proof-of-concept scale without needing to purchase a

membership. Once scale is reached, it may be wise to host with them. For

$20 a month, they offer 8GB of database space and support for 100,000

daily active users. Anything beyond that number of daily active users is

beyond the scope of this document.

Another useful feature of Supabase is that it has a fully featured

authentication system. Authentication for the system will be discussed

further in the document, but authentication for the system will require some

level of database privilege. There will be a separate process that will trigger

certain API requests to happen at certain time intervals, and this will require

elevated privilege compared to anonymous users. Supabase can handle this

with relative ease, and works alongside database-level securities outlined in

the PostgreSQL section of this document. As mentioned previously, securing

data is of the utmost concern, and Supabase is a cost-effective way to

guarantee that. With large-scale authentication schemes unnecessary for the

current scope of the project, Supabase has more than enough

out-of-the-box authentication functionality for the project. A recurring theme

in the technology choices in the stretch goals is leveraging existing

technology to make their lives easier. By offloading the need to build a
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dedicated authentication system,there can be more time to perfect the parts

of the project that add the most value. The team did not end up using this in

the final product, but offers an avenue for improvement in the future if

necessary.

Supabase is open-source. The underlying Supabase system is free to

host on one’s own, without the need to host with Supabase directly. While

there is no current plan to do this, it does mean the system is largely

modular, and can be deployed separately to any partner. It also ensures all

the technology used for this project is open-source, keeping the project free

from licensing issues or its own re-use, as the project is open-source itself.

This makes Supabase a good choice for an open-source project like ours.

Supabase is designed to make things easy when building systems, and

comes with several client libraries. The team will likely be using both the

JavaScript/TypeScript client library and the Flutter client library, for the web

API/app and the mobile app respectively. Supabase offers additional features

for TypeScript development, including the generation of types for the

database for easy access. Supabase is a good choice because it plays well

with the technology stack being used for the stretch goals, along with the

previously developed mobile app.

Before deciding to use Supabase, the team explored other options. The

most obvious choice besides Supabase is Firebase, Google’s

Backend-as-a-Service (BaaS) project. Firebase is very similar to Supabase in

the sense they are both BaaS providers and work to offload the same

development concerns. Both offer fully-featured authentication systems,

databases, and interoperability with JavaScript/TypeScript and Flutter.

Firebase and Supabase differ in a few key ways. The first is that Firebase is

not open-source, and Supabase is. This makes Supabase more appealing for

the project compared to Firebase, as AI Pothole Detection is an open-source
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project as well. Additionally, Supabase offers a more generous free tier while

Firebase charges mostly for database reads and writes. This too makes

Supabase a more appealing option, as the project is largely a price-adverse

group due to the lack of sponsorship.

Supabase's choice of PostgreSQL as its underlying database brings the

reliability, robustness, and features of a mature relational database

management system (RDBMS). PostgreSQL is known for its ACID

compliance, which ensures data consistency, and its support for complex

queries and transactions. This makes Supabase suitable for applications that

require strong data integrity and relationships between different entities.

On the other hand, Firebase's Firestore employs a NoSQL approach,

specifically a document-oriented model. This provides a flexible schema,

allowing developers to store and retrieve data in a format that suits their

application's needs. Firestore's scalability is noteworthy, making it

well-suited for applications with rapidly changing or unpredictable data

structures. However, the lack of a predefined schema might lead to

challenges in maintaining data consistency and relationships compared to a

traditional relational database like PostgreSQL.

While choosing between the two is largely a matter of personal

preference in regard to the concerns and features mentioned above, the

team is opting with PostgreSQL as the database choice for its

row-level-security functionality and robustness. The next section about

PostgreSQL will highlight some of the features the team wishes to take

advantage of, including row-level-security (RLS) policies that are unique to

PostgreSQL.

After considering the above information, the project is planning on

using Supabase and its PostgreSQL database to address the database

requirements. Supabase is a reliable third party for essential backend needs,
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and plays well with existing technology. Supabase handles hosting and

authentication, two concerns that we’d rather not implement custom

solutions in the interest of time-management. While most of these features

are offered by Supabases’ competitor Firebase, Supabase offers a more

generous pricing scheme and is open-source, allowing hosting elsewhere if

needed.

15.4 Original Database Plan

PostgreSQL is a popular SQL relational database. It’s an industry

favorite for data-centric projects, and provides a much greater level of

extendibility compared to contemporaries like MySQL. The extendable nature

of PostgreSQL will come in handy when tooling it for location based queries,

which will be elaborated on later in this section. Besides PostgreSQL’s

extendability, it also sports a killer feature in the form of RLS queries. RLS

stands for row-level-security and allows the group to set specific rules on

what kind of rows can be inserted, updated, deleted, and selected in a given

table, greatly enhancing security by adding another layer of protection.

RLS is a way to fine tune exactly what rows in a table a given user can

access. This would have aided the application in several ways. To illustrate

this, let's remind ourselves of the fact that the original system would have

some level of permissions to handle having users being able to see

unverified potholes, but simultaneously be allowed to create them. This

directly translates into RLS policy, where SELECT operations would be

restricted for anonymous users, but INSERT would be allowed. The team can

very simply and very quickly write a SQL conditional statement that prevents

any user from reading from the table, while another RLS policy allows

insertions into the table. RLS allows the user to independently set conditions
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for insert, update, select, and delete, without worry that the user will

accidentally forget a check in the API and allow regular users to post.

Once RLS policies are enabled for a given table, all actions are

restricted. By default, RLS prevents all database operations unless expressly

told otherwise. To implement a user that would have elevated permissions

compared to the anonymous user, i.e. a server that would analyze unverified

potholes, the user would have the server sign in to Supabase and write RLS

queries to enable those with the “admin” role to see and create for that

table’s rows. This provides database level data protections with very little

effort. This means that if an error were to occur in the API that allowed

requests to be triggered without proper checks, they will still fail if the RLS

policies do not allow them access to the table. While we did not implement,

these features,

Row Level Security policies means the mobile app can actually just use

a single anon key to contact Supabase. This would have come in handy

when developing on mobile and the SvelteKit project. Since all actions are

restricted based on RLS policies, the database will throw an error if a given

user is outside their permissions. All of this greatly simplifies development

complexity, and would have prevented the project from getting bogged down

in the tedious creation of a robust authentication process.

A question that hasn’t been answered up to this point is how exactly

the database tables would have been set up. The database would have

followed the traditional resource-oriented database configuration, where

each table in the relational database represents a group of a given resource.

Creating a system where those responsibilities can be added without
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compromising the core functionality was a primary concern.

Figure 15.1: a hypothetical ERD of the Pothole Database

At the core of the old system, there are two entities: “confirmed” and

“unconfirmed”. Unconfirmed potholes are representative entities for

unconfirmed pothole reports from the field. Confirmed potholes on the other

hand, are not directly the result of field reporting, and are extrapolated from

the Unconfirmed resource table. The specifics of this extrapolation will be

explored later.

The fact that ConfirmedPotholes are derivatives of

UserSubmittedPotholes illustrates a relationship that can be represented in

an Entity-Relationship Diagram (ERD). ConfirmedPotholes have a

one-to-many relationship with UserSubmittedPotholes, where a

ConfirmedPothole is fundamentally a collection of UserSubmittedPotholes. An

inverse relationship exists where UserSubmittedPotholes only belong to a

single ConfirmedPothole (or none).

The relationships between these two entities encapsulates the purpose

of the database. The database is preparing unverified pothole information

and consolidating that information into “confirmed” reports. The database

will keep track of how many “unconfirmed” reports substantiate a

“confirmed” report and use that data to determine how long until the

database cannot consider this report ”confirmed”.
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Going forward, the representation in the database for the unconfirmed

potholes submitted by users will be referred to as “unconfirmed reports” and

publicly visible confirmed potholes as “confirmed reports”.

One of the key differences between unconfirmed and confirmed

reports is how they are created. Unconfirmed reports are submitted by

anonymous users of the AI Pothole Detection mobile app, while confirmed

reports are generated internally using an internal set of statistical heuristics.

Another key difference between unconfirmed and confirmed reports is

who they are visible to. While unconfirmed reports can be submitted by

anyone, they cannot be seen by any public or anon user. Unconfirmed

reports are only visible to the internal systems that operate on “confirmed”

potholes, i.e. any routine that needs to determine when to create, update, or

delete a confirmed pothole resource. On the other hand, confirmed potholes

are explicitly visible to the public, and are representative of what the team

would consider a collection of ongoing reliable reports of a pothole.

In the next section, the implementation of these restrictions practically

on the database layer will be examined, providing an extra layer of

protection outside of the API layer.

Another thing to notice regarding the setup of the PostgreSQL

database is the type of data estimated to be stored in the tables. As

mentioned above, the database has two distinct entities: a “unconfirmed”

pothole entity, and a “confirmed” pothole entity. These two entities share

much in common, and that extends to the data they store. At a high level,

both share two essential things: associated geolocation and number of

potholes detected. These two identifiers represent the core information the

system wishes to know about a pothole: where it is and how many.
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The “confirmed” and “unconfirmed” resources are defined by their

differences, namely with the “confirmed” resource containing extra data

facilitating data management. The Confirmed resource has a

‘avg_num_potholes’ instead of a ‘num_potholes’ to show that this resource

is aggregating the values of another resource. There are two completely

unique properties to the Confirmed resource. One is the number of reports

made supporting this confirmed report, which is to say the number of

Unconfirmed reports that are “supporting” this Confirmed resource. The

other unique resource is the ‘expires’ datetime property, signifying when this

Confirmed report should be marked as ‘stale’ or possibly deleted.

The database is an essential piece of infrastructure for accomplishing

what the stretch goals have set out to do. It provides the foundation for the

rest of the project, and while this will be the first component of the stretch

goals to be set up, it must reflect what is to come later on in the project.

The hope is that by planning ahead now, there will be a smooth setup of

database operations in preparation for building an API.

The team plans to make use of PostgreSQL’s Row-Level-Security

features to allow some parts of the database to be available to the public

and others unavailable to the public. As gone over extensively in previous

sections, the database revolves around a primary relationship between two

core resources: the Confirmed and Unconfirmed resources. Confirmed

resources are linked to many Unconfirmed resources, which are used to

calculate its own properties. This establishes a one-to-many relationship,

where one Confirmed resource can have many Unconfirmed resources

deciding its stored property values. The team never wants to expose

Unconfirmed resources, as their information is by definition unconfirmed, but

the database should allow any anonymous user to view confirmed potholes.

This will be accomplished through Row-Level-Security (RLS) policies
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Row-Level-Security policies are database-layer protections that

prevent unauthorized database operations, whether that be inserting,

updating, deleting, or selecting. They take the form of conditional SQL

queries that are run against every database request, modifying the

information returned. Several RLS policies will need to be written in order to

secure data.

Regarding the Unconfirmed database, the database will need to create

a RLS policy that ensures that anonymous users may insert into the

Unconfirmed table. The database would want to create RLS policies that

would restrict the update, delete, and modify operations on this table, as

they will not be modified or deleted by standard requests. On Confirmed

tables, the database wants to restrict all actions except for select for

anonymous users. Confirmed resources are visible to anyone, but only

modifiable by internal systems. The team should add RLS policies that only

enable create, update, and delete operations for an authenticated server.

This can be implemented through standard authentication procedures with

Supabase, and will be examined in depth later.

Beyond the database lies the API, which will be the preferred way

users will interact with the database. The API will be created using SvelteKit,

which allows for the creation of robust REST APIs. The mobile app will

contact this API to relay unverified pothole data, and the API will be in

charge of storing this information properly, being some kind of CRON job

that would run through the database and upgrade any collection of

unverified reports that meet certain thresholds to visible verified reports.

These verified reports would be exposed to users through the API, allowing

for use in the web-app portion of the project.



148

15.5 Final Database Structure

The final database structure deviated

from the original plan. The database

surrounds two major resources: Potholes

and Images. Potholes represent a unique

report of a real life pothole. Images are

images of real life potholes, submitted

separately to potholes. Pothole and Image

resources have a one-to-many relationship,

meaning one pothole may have many

images of it in the database.

Shown is an image of the current

entity-relationship diagram (ERD) of the

project. Images are crucially stored separately and associated via ID to the

potholes to establish the desired one-to-many relationship that we desire.

This shares many similarities with the old model, but is much simpler.

Additionally, expiry is stored on the Pothole resource themselves and can be

used to filter out invalid results.

15.6 Final API Design

It is best to first start by describing the final web API design before

delving into the original plan. The final API was an Express.js application

that accepted and served JSON. It followed traditional REST standards in

terms of naming and its resource-focused design.

The API was developed using Bun, which is a drop in replacement for

both Node and NPM (Node Package Manager). While the runtime it offers is
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often faster than Node.js, the primary reason we chose the runtime/package

manager is its out-of-the-box TypeScript support.

TypeScript adds static type checking and annotations on top of

JavaScript. It adds many of the benefits of statically typed languages with

the ergonomics of JavaScript.

The following endpoints were created:

- GET /potholes?minLat=<>& ... &maxLong=<>

- get potholes in bounding box

- POST /potholes:report

- report detected pothole

- DELETE /potholes/[id]

- delete reported pothole by id

- GET /images/[id]

- get image from id

- GET /images?pothole=<>

- get images of specific pothole

- POST /images

- submit image of a pothole

These endpoints were used to create the functionality in the frontend

and backend. The API checks during the report endpoint for an existing

Pothole resource within 150 meters.

15.7 Old API Design

The web API will be the primary gateway towards an external entity

interacting with the system. The frontend will make calls to HTTP endpoints

using the standard HTTP verbs which will perform actions or yield results

depending on the request made. Primarily, this will take the shape of

manipulating two resources in the database by performing requests on

them.
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The API must have endpoints suitable for every type of

resource-centric request a user could make. This includes traditional user

use cases, like reporting an unconfirmed pothole, and niche server requests

like pruning and managing confirmed potholes. Both of these kinds of

requests must be accommodated by the API, and incorporate proper checks

to give responsive feedback on the API.

A goal of this API is to be resource oriented. A resource oriented API is

one that is centered around the creation and management of resources.

(Resource-Oriented Design | Cloud APIs, n.d.). In previous sections, it has

been outlined what constitutes a resource in the system. A resource in this

context refers to a discrete set of data, usually representing something. In

this case, the database has Unconfirmed and Confirmed resources,

representing confirmed and unconfirmed potholes. Unconfirmed potholes are

potholes reported by a user, meaning the Unconfirmed resource table in the

database could have multiple rows referring to the same set of potholes.

Confirmed resources aim to be an accurate description of a group of

potholes with an associated area, and not have duplicate rows describing the

same pothole/set of potholes.

Confirmed resources are created as a result of an Unconfirmed

resource being created. Before an Unconfirmed resource is created, the API

will check for a Confirmed resource in the same reported area. If there is

one, the Unconfirmed resource will be created “supporting” the found

Confirmed resource, also updating the found Confirmed resource with the

given stats.

The team also would like an endpoint to trigger a database pruning,

where the database removes all the “stale” reports. A “stale” or expired

resource is a Completed resource that has not been updated in a recent time

frame. It can be assumed this means the pothole has been filled or has
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otherwise been repaired. This pruning process will remove the entries in

which the expired property has passed the current date. This endpoint will

likely be triggered regularly through the use of CRON jobs or serverless

functions. This function will require elevated permissions, a subject that has

been elaborated on in previous sections. This process will be explained in

detail further in this section.

The purpose of the API is to allow frontend interfaces to communicate

with the backend to support the creation of pothole reports. It is good to

keep in mind that the database does not need to take into account grouping

of potholes or any sort of logic to determine where they were detected, as

that will be handled inside of the mobile application code. The team is solely

concerned here with the management of resources, and how this app will

generate and maintain them.

First, the team will take a look at how it is intended to take in requests

from the mobile app indicating that they have located a pothole (or

collection of potholes) at a given location. This will take the form of a POST

request to the “/api/pothole” endpoint. This endpoint will be responsible for

producing new Unconfirmed resources, representing the users unconfirmed

report. The request will expect a json body containing the location of the

pothole, the number of potholes reported, and a signature. Once this

request is received on the server, it will process the request by first checking

if there is a Confirmed report in the same area that this request was made.

If there is, the API will assume these reports are talking about the same

pothole, and associate this report with the confirmed report. If there is not,

a new Confirmed resource will be made, with the newly created Unconfirmed

resource referencing it. An important fact here is that the Unconfirmed

report is created after identifying or creating the Confirmed report it will

produce.
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It should be noted that not every Confirmed report may be shown to

users in the final stretch goal interface. The API will likely set some form of

threshold restricting shown Confirmed resources to those with a certain

number of substantiating reports. This will be explored further when

discussing the implementation of the map interfaces.

Since the creation of Unconfirmed resources will trigger the creation of

a Confirmed resource,that process will be gone over next. Creating a

Confirmed resource is a privileged action in the system, and requires

elevated privilege. For this, the server will log in to the system using

authenticated credentials, and perform the request. This will follow a similar

pattern as to a Confirmed report, minus the need for cryptographic

signatures. This request will be made to a “/api/potholes/confirmed” POST

endpoint with a request body matching the required fields needed for the

database.

The team will also need the ability to modify Confirmed resources once

they detect additional reports. It’s important to be able to increment the

number of reports, as well as update location if needed, as well as add a

certain number of weeks/days to its expiration date. To accomplish this, a

partial update API design pattern, as laid out by JJ Geewax in his book API

Design Patterns (Geewax, 2021), will be used. This involves creating a single

endpoint, where the column the user wishes to update is included, along

with its value. This would look something like

“/api/potholes/confirmed/fieldMask=[field]”, where a PATCH request would

be made to this endpoint url with the “[field]” would be replaced by the

desired field. This pattern ensures that two users updating different parts of

the same resource do not conflict with one another. The process is very

similar to the other ones, except as this is a privileged action that does not

require the cryptographic signature. Instead, the group can simply extract
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the new parameter value from the body and examine the url to figure out

what is being updated.

In order to perform reads of the “confirmed” pothole database, the

group must implement some paginated search endpoints. These endpoints

will need to be established for the Confirmed resource specifically, and

permit searching by multiple parameters. Users of the map and dataset will

want to see the reports in a given variable radius around a variable location.

This means the group will need multiple paginated endpoints for the

Confirmed resource.

The way the group will set up paginated endpoints will be based on the

paginated endpoint pattern described in API Design Patterns by JJ Geewax.

This endpoint is completed by two separate urls:

● “/api/[resource]/pageSize=[size]&sortBy=[parameter]”

● “/api/[resource]/pageSize=[size]&sortBy=[parameter]&pageToken=[to

ken]”.

The first url is to get the first page of results with a maximum of size

items. After the first request, the user is given a “page token”, a token in the

second endpoint url to get subsequent pages of results. Each request returns

a page token, with its value either being a base-64 encoded string or null if

there are no further items. In this implementation, this base-64 encoded

string will likely be the last index included in the search, to be decoded on

the next run and be used to calculate the next starting point.

At first, this pattern may seem odd. Why not use the index of the final

item as the start of the next and include that? Why encode the string at all?

The point of this is to obfuscate how the API calculates its next page. If the

index is used, it may limit the options to query the data. While this likely will
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not happen, the group opted for this pattern as it is battle-tested and

industry standard, and very unlikely to lead to complications.

The first paginated search endpoint that will be required is an endpoint

to get a list of Confirmed resources sorted by distance to a given location.

This endpoint url will look something like

● “/api/potholes/confirmed/pageSize=[size]&sortBy=[location]”

● “/api/potholes/confirmed/pageSize=[size]&sortBy=[location]&pageTok

en=[token]”

The implementation of the actual endpoint in code will leverage

Supabase’s included client library, which includes methods for getting

paginated results from the endpoint. The pageToken will be converted into a

starting index for Supabase’s pagination function, and the results will be

formatted into responses.

Supabase offers a fully featured authentication system, complete with

login, registration, email confirmation, etc. The Supabase client must be

signed into client-side, and this client-side instantiation will be passed into

the backend for use in the API. The specifics of this will be given in the

SvelteKit section later on in this section.

The Supabase client by default is loaded with anonymous permissions,

meaning these are the default permissions provided. This means there is no

id for the current user in the database, and cannot use anything to

determine what permissions this anonymous user should have. The default

permissions of the average user must be created. To set up the server-tier

permissions, there will be a user using the built in Supabase sign up feature,

but once it is done being used registration will be disabled. This will be the

only “user” in the system with authenticated permissions, and can be used

by RLS and Supabase to give permissions. The group can incorporate this
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into RLS queries directly. While not necessarily the intended use of its

system, this would work as long as the team does not plan to incorporate

accounts into the authentication schema. Even then, with modifications and

expansion of a most robust authentication system, this option will still work.

One downside of using a regular account for elevated server privileges

is that it requires a less elegant implementation. Since the privileged

requests happen from inside an API request, the API must be able to have a

Supabase session with the default permissions loaded alongside the user’s

anonymous Supabase session. This is not a major issue, and does not

impact performance in any way. Instead, it is a less elegant solution that

may produce more confusing code further down the line.

Previously mentioned, while building the API, validation checks for

permissions will still be included even though RLS would prevent the

operation from occurring. The reason for this is creating a clean API. When

other subteams of this team are using the API, it would be much more

intuitive for them to receive a detailed error message during development,

rather than a generic RLS error that gives very little information on what

went wrong.

Another reason is that certain operations that RLS prevents will return

empty data, instead of an error. This could be confusing. Without code

checks for permissions, the recipient could receive empty data which may be

interpreted as just no results. Providing checks in code allows the group to

return rich error information to the users of the API, making development

easier for all of us.
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15.8 Conclusions

In the above sections, the database was laid out for the project. As

iterated in the previous sections, The group would configure the database to

manage two primary resources: Unconfirmed and Confirmed resources.

Confirmed resources represent “confirmed” reports of potholes, and are

exposed to users through the API and Unconfirmed resources are uploaded

to the database through the API by anonymous users using the app.

Configuring the database to handle these resources securely means creating

row-level-security (RLS) policies, a feature of PostgreSQL, the database used

by the chosen provider Supabase.

Our API will be written using SvelteKit in TypeScript, and will have

several endpoints for creating and querying the data. Paginated endpoints

will exist allowing location based search in a given radius around a given

location, for use in the frontend map and warning systems.

Once the API is created, all that is left is to create a web app

containing a map of pothole data and upgrade the mobile app to have

enhanced early-warning capabilities. This is to make the app more valuable,

and show off the useful data that has been collected. The group believes by

showing off this data, it can grow and entice users to use the app and

service.

Creating a database of pothole information is one of the greatest

potential benefits and use cases of the AI model and app. This information

could be used by local communities and governments to improve road

quality and identify areas with recurrent problems.
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16 Front-End Web Application

16.1 Web Application Overview

The ultimate goal of the stretch goals is to have a public interface

where users can browse the collected pothole data in an intuitive and

informative way. The primary way the group wishes to accomplish this is

with an interactive map where users can see exactly where around them

have the most potholes.

This goal would be conducted in two concurrently running parts, one

for the desktop application and one for the web. The web app portion will

likely be the most labor costly portion, as a frontend web interface must be

included. This frontend web interface will only be used for viewing pothole

information as well as generating reports of an area of potholes. The main

use of the web application would be the public who is looking to find

information on the locations of potholes. The desktop application has

additional features where a user could add or delete a pothole from the map,

this is because the user base for the desktop application will comprise mostly

of municipality workers.

The web app would be composed of several components, and make

use of the Google Maps API for displaying a map with annotated markers.

Users are able to manipulate this map, and it would update to display the

reported potholes on screen. Users can then select a pothole, and view

information about that specific pothole. Users are also able to generate a

report of all the potholes that are currently in the view of the map and

download it as a csv.
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16.2 Web Application Architecture

Designing web application architecture is the foundation of a

successful web infrastructure system. There are many languages and

frameworks to choose from, each serving their own purposes with

advantages and disadvantages. Due to the simplicity of our web application,

the team decided not to use any specific framework to develop the client

side portion of the application. The reasoning for that is due to the fact that

the team’s system lacked the need for numerous pages that needed to be

routed. The overall goal of our client application was to simply display a map

of potholes for anyone to view. A framework was considered for the use of

having an instant DOM refreshing feature without the need to refresh the

page but it was later discovered that was achievable with just regular

javascript. With all of that being said, our client side web architecture

consists of HTML, CSS, and BootStrap for styling as well as javascript for

handling our http requests to necessary APIs.

16.3 Web Application Style

When it comes to web application styling, the team wanted to keep it

simple. It was finally decided to use BootStrap5 to help style the website due

to its powerful out-of-the box features. BootStrap5 will allow anyone to style

HTML elements with predetermined colors, sizing, and spacing options all by

assigning any HTML element to a specific bootstrap class. Not to mention it

also allows for a web page to be fully responsive with this method. Those

reasons along with the quick start up ability and easy to use framework of

BootStrap, are why the team decided to use it for styling. Aside from

BootStrap, the team also had a global CSS file within the web application to

handle any specific HTMl element that needed enhancements beyond

BootStrap’s abilities.
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Taking a look at Figure 16.3.1 below, this is the fully complete web

application. With the name of our project at the top, the export to CSV

button, and the map there are no other elements in the site. Google Maps

API also has a couple different settings for the map. The main one being

able to change from the standard map view to a satellite view as well as

adjust the zoom and change the view position of the map.

Figure 16.3.1: SmoothRide Web Application

16.4 Web Application Maps API

Google allows fairly open access to their Maps API which allows users

to generate their own custom maps loaded with any custom markers that

are necessary. This was exactly what our group needed for this web

application and the best part is that fact that it is free and comes with its

own settings to help restrict the API key.
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Firstly, our group had to create a Google Cloud account and apply to

obtain an API key. This did not consist of anything more than creating a

billing account as well as a few captchas and questions about how the key

would be used (personally, or commercially). After obtaining the API key,

Google Cloud makes it very intuitive and simple to restrict the key in various

ways. The first option we opted for was to restrict the key to only be allowed

access to the Maps JavaScript API as we would not be using any other APIs

or SDKs. The second restriction we opted for was the website option, which

only allows use of the API key on specified websites that we own.

Now that the API has been obtained and restricted in order to protect

it, we were able to start creating our map. Also in Google Cloud, we have to

create a custom map that will be used in tandem with our API key on the

web application. The map we selected was based in Javascript as that is

what we were using to create this web application and the map was

implemented with Raster over Vector, because Raster is supported by all

platforms as Vector is more new and not supported. After inputting these

settings Google Cloud will generate you a unique Map ID that will be used in

the API call to generate the map.

Google Cloud also gives plenty of customization options when it comes

to the map that you are creating. With these customization options we could

choose the theme of the map as well as the style and if necessary an

entirely custom environment can be made to make the map look however

the user decides. We did like the idea of having a custom map but all in all

we found it was unnecessary with the time that we had and chose to just

use a default map.

After all of this is complete we can now implement a map into our web

application. There are plenty of very in depth articles about how to use the

Maps API that made the base implementation a smooth process. After this



161

was done we now were able to start adding in our custom markers for the

potholes.

Custom markers are created and placed on the map using javascript

code. It starts with the initMap function that will initialize the map. Within

that function there is an event listener that will trigger whenever the location

of the map changes, as in when a user will scroll to a different area on the

map. When that even is triggered, it will grab the coordinate values of each

corner of the map and then send a GET request to the backend’s API. The

GET request will return an array of potholes that exist within the area of the

four coordinates that were sent. Once that array of potholes is obtained, the

function loops through it and places a marker at each coordinate location

using the google.maps.Marker() function. This method allows the webpage

to only ping the API for potholes within a specific area and it will actively do

so which will limit the amount of data being sent through http requests on

the client-server system.

16.5 Web Application Deployment

Once the web application was completely fleshed out we looked into a

couple of options in terms of deployment. The method that stood out to us

immediately was Amazon’s AWS Amplify. This was a very simple and easy to

use deployment service that was also free to use. The entire process

consisted of having the project folder of our web application and dropping it

into Amplify and pressing the deploy button. After a few seconds it would

generate the link for the website that was now live and open to access. We

would then take that link and add it to the Maps API restrictions to ensure

that everything was working correctly, and the web application was

deployed. There was no option for customizing domains because only the

free tier was used and we were limited on how many times a site could be

accessed in a month or the free tier would expire. Thankfully we did not
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come close to reaching this quota and were able to keep the spending

budget at 0$.

17 Testing and Evaluation

17.1 Model Testing

The program went through unit testing after the AI model was

implemented. The app had to work in a variety of different situations, and it

had to properly identify potholes in many road environments. For the

majority of these testings, the app was run in multiple different

circumstances and areas.

Functional Testing

● The app had to be able to identify potholes with high accuracy.

● The training the group had done before provided the ability for the

model to work in photos, but the model is not run on video in the

training phase. The model was as effective when tested on video and

on the road.

Compatibility Testing

● The program had to work across various different devices. These

products are available to be tested on. The model must work on both

of the different operating systems.

● The program was run at multiple different times of day, and on

multiple different roads.

○ The app is suboptimal when running at night time but it is still

able to detect potholes. Because of the worse performance and
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less coverage on potholes not hit by headlights, it is highly

recommended to use the app during the day.

● The app will be run on roads that have no potholes to identify.

○ The app did not falsely identify potholes. The model parameters

can be manually changed to require a higher degree of

confidence in the pothole location. This data can be taken on

many roads without potholes.

Integration Testing

● The model loads at the same time that the app does. It doesn't have a

period at startup where it doesn’t work, so it’s well integrated

● The model was tested on detecting multiple potholes, and the

implemented delay solves this issue.

Performance Testing

● The model doesn’t take up so much of the laptop’s GPU that it is laggy.

There is no need to change the speed of the AI model, which we could

if needed

● It was tested, and the model doesn’t have significantly load when it

identifies a pothole. The model was not laggy, so the performance

does not need to be changed. The app is intensive on the resources

regardless, but it is manageable.

Robustness Testing

● It was tested if the model can identify a pothole when it’s very close to

it. It can, but it’s less accurate. Luckily, it’s far more important for

functional use that it can detect potholes when they’re very far away,

however.

Usability Testing
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● This will take user feedback on how the model performs when using

the app as intended. We have been able to successfully utilize the app

on the road live.

Internationalization Testing

● The model works on different roads in different countries, and doesn’t

misidentify much noise from these countries to be potholes. The model

also has a lane fitting function where only the potholes in the lane can

actually notify the user and be uploaded to the database

● This was tested using video data of other countries sent into the app.

We did not fly to different countries, as that wasn’t feasible.

17.2 Application Testing

The base application is rather simple so there is not a lot of testing

other than testing the model inside of the application which is talked about

in depth later in the Integrated Testing section. Earlier in the paper the

different aspects of the program were explained in depth, and they will be

touched on again here for ease of explanation, for more in depth

explanations on each screen please see 10.0 Mobile Design and User

Experience.

Every feature of the laptop program needs to work correctly. The map

needs to consistently come up with all of the potholes and load as each

section of the map is seen, but it’s irrelevant for it to load potholes that are

not in view. Deletion needs to delete the potholes not only from the app but

also the database, and adding a pothole needs to add the pothole to the

database’s map, the website’s map, and the map on the actual app. The
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report needs to accurately show the potholes that were identified by the

bounding box.

Another aspect of testing came with the lane detection software. When

the lanes are enabled, we needed to double check that only the potholes

identified in the lane were added to the database. The lane detection

software also needed to be visible to the user, and it needed to be checked

that the lane detection could be turned on and off, altered, changed from

camera to camera, especially with different camera shapes. We found that

the tests were always successful.

One screen to test was the main screen of the application, the

“Camera Screen.” This screen involves the application having access to the

user’s camera and for testing this functionality the camera’s vision should be

displayed across the entire screen. The navigation bar appears at the top of

all of the screens that the application is currently planning on having. In

order to test this the application should switch to the different screens as

they are selected on the navigation bar. There was also a test to make sure

that if the user is already present at the “Camera Screen,” they will not

reload the “Camera Screen” if they select it from the navigation bar. This

removed any confusion as well as help with the efficiency of the application.

There is no reason to reload a screen that is already loaded so there was a

check for the user’s current screen to ensure that this does not happen,

which the application passed.

There was a lot of testing with the “Settings Screen.” Inside the

settings screen there is a slider that allows users to change the alert volume

when a pothole is detected. This testing was done after the model was

integrated but testing was also done before then to make sure that the

application recognizes the slider as well as moves around when interacted

with it. There is also an alert size slider that was tested in depth as well. For
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now the same testing can be done to make sure the slider works and it is

able to recognize when it is being interacted with, same as the volume slider.

This navigation between the screens was tested to ensure the user has

access to it.

The other testing that was done in regard to the base application had

to do with different stretch goals. The first stretch goal that the group has

for the application is creating an interactive tutorial for the user to learn

more about how to use the application along with information the user can

read to be informed about how the model works, but we did not end up

creating this.

One stretch goal was the biggest one for the group and required the

most testing at this stage. The final screen is a map of all of the potholes

that user’s applications have detected over time. This screen is connected to

a database. This first testing done involves ensuring that the user is able to

move from one screen to another. The map itself is interactable and allows

the user to not only move around to see the area around them but also

manually report potholes that either they know about or on the off chance

the application fails to see for some reason. Testing was needed to be done

to make sure the map is interactable, and the user is able to create reports

and move around as they seemed fit. The largest group of testing involved

the storage of the positions of the potholes and them correctly appearing on

the map screen. This was crucial to make sure it is working properly because

of the fact that some of the alerts rely on these positions and if the positions

are incorrect, the application could falsely alert the user or fail to alert the

user about the existence of a pothole.
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18 Conclusion

The final results of the project are that we were able to train an AI

model to perform pothole detection, a mobile application that was developed

and later dropped, a laptop program that is set up to both perform object

detection and allow for map controls, and a website front-end for viewing

the potholes and generating reports. The AI model selected was able to

achieve great performance on the pothole detection task, and was able to

perform in a variety of road conditions, from dirt roads to wet to paved. The

mobile application was able to run an AI model and generate alerts and

database uploads in real time, but the model performance was not deemed

acceptable. The laptop program did have acceptable performance results for

both the model and the application itself, allowing for detection, uploading,

and viewing the potholes on a map. The map allowed for the user to add,

delete, and download a report on the found potholes, as well as view images

of the potholes detected. There was a website developed that performed

similar actions to the map in the laptop program, but only allowed for

downloading of potholes. Finally, a database that records the potholes that

have ever been collected, the number of times it has been seen, and when it

should be removed from the database. This database automatically merges

potholes that are near each other and removes potholes that are older than

6 months old, under the assumption that they are either patched or at least

need to be checked again.

To summarize the project, AI Pothole Detection is a laptop and web

application that uses YOLOv8, an object detection model, to detect upcoming

potholes. This model is run by a laptop application that has three pages:

The main viewing/camera page, a settings page for adjusting opacity and

volume, and a map page for viewing the potholes on a map. The intended

use of the program is for the camera to be used in the top center of a
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driver’s windshield, similar to a dashcam. This will give the program, and

thus the AI, a clear view of the road to maximize pothole detection

performance. When a pothole is detected, its location will be estimated to be

either on the left, right, or middle of the road. If the pothole is on the left or

right, an associated directional alert will play from the program. The alert

will both be visual and auditory, with the visual alert being performed by

shading part of the screen and the auditory alarm starting which side the

pothole is on. The map will display all the potholes collected and give the

user control over adding, removing, and downloading a report on the

potholes. The website is a public facing domain to allow regular citizens to

view the database without modifying it.

The lessons learned in this project were on expectations, alternative

plans, and testing. The team originally expected that the mobile application

and the MobileNet model would suffice for operation, but after live testing

and deployment during the first Leinecker demo, the team found out that

the model did not work well at all. This significantly set back work, as the

entire mobile application had to be scrapped and a new application made as

quickly as possible. This taught the team a lesson on having back-up plans if

components of the project fail, especially if some components of the project

have a high risk of failure. The team also learned that they needed to have

more robust testing. While there was some amount of actual live testing, it

was not as significant as originally planned due to the extended development

time of the model and the mobile application. This led to not enough

deployed testing, leading to a subway demonstration with Leinecker. The

team also had a lesson on deadlines. The team struggled to occasionally

meet deadlines and schedule the required dates, such as the Leinecker demo

and final committee. This was partly due to the head of the team not being

in the Leinecker section and the team having scheduling conflicts, but this

could have been prevented with earlier planning.
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The future work that can be done for the application are fixing the

mobile application, making the laptop program and website more robust,

and making a more efficient AI model. The mobile application is still a well

made program and was able to run the model, but the model did not

perform well and there were slowdown issues. It may be possible to fix the

app to use hardware acceleration better, and possibly integrate native code

into the Flutter app to better utilize hardware resources without causing

overheating. A new AI model could also be trained as well, or the MobileNet

model could be improved. TensorFlow’s Object Detection API does allow for

quantization aware training, but that was only designed for TensorFlow 1 and

not 2. It may be possible that using that system may lead to a better

performing model that can be run on the mobile device. The laptop program

and website could be made better as well. The laptop program is somewhat

laggy and has multiple points where it can crash. It may be a good idea to

rebuild the program in another Python GUI library or another language

entirely. For the website, it would be good to have the same report

functionality as in the map for the laptop program. It would also be a good

idea to deploy the website to an actual URL.

19 Administration and Operations

19.1 Tools

Some essential tools that were used: Github, Jira, Visual Studio Code,

RoboFlow Universe, Flutter, Android Studio, and Pytorch. Github and Jira

were the first 2 tools that were setup by this group in order streamline work

as well as setup organization with an agile development workflow. All of the

group members are using visual studio code as their IDE because the group
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has all used this the most and it provides a wide array of plugins that are

required in order to complete this project.

The AI team has used multiple tools in order to obtain an entire

dataset of images and start training test models. RoboFlow is used as the

storage system for holding the entire dataset of images that the group is

currently using to train the models. Ultralytics was also used to train models

and will be used more throughout this project. There were multiple tools that

were not listed above to train some test models as the group was getting to

learn the AI aspect of the project more. Some of these tools include Google

Collab and Pytorch. For training the final model the group does currently

have the plan of training it on a local system but if the training is too

intensive and takes too long the group will fall back into using the Newton

Cluster that is provided to students by UCF.

The mobile team used Flutter to create the mobile application. For

more information about this decision there is more information provided

earlier in this document. Android studio was also used as well by the mobile

team in order to create an application that is compatible for both IOS and

Android. The team used a plugin known as Flutter Vision that allowed them

to integrate the model into the application itself with the backup of using

another PyTorch plugin that is compatible.

In the laptop program, the main tools that were used are Python,

Ultralytics, Custom TKinter. Python was used as the base coding language for

it, and Custom TKinter allowed for smooth integration of many of the

features into the application. Ultralytics was utilized to run the AI model on

the actual app itself.
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19.2 Budget

Table 17.2.1 provides an itemized overview list of all the costs that will be

and are incurred for the application on an annual basis.

Tool/Equipment Purpose Vendor Total Cost

GitHub

Organization

(Free Tier)

Code hosting and

collaborative

management

GitHub $0.00

Roboflow

Universe

Datasets

Image Dataset

Storage (up to

10,000 images)

RoboFlow $0.00

Flutter Mobile

application

development

Flutter $0.00

Jira Team

organization and

agile

development

Atlassian $0.00

Visual Studio

Code

IDE and text

editor

Microsoft $0.00

Android Studio Mobile

application

development

Google $0.00

Ultralytics Model Training Ultralytics $0.00

Google Collab Model Training Google $0.00
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Newton Cluster Model Training UCF $0.00

Local Machine Model Training Nicholas Gray $0.00

PyTorch /

TensorFlow

Model

Development and

mobile

integration

Meta AI $0.00

Total Cost $0.00

19.3 Timeline

At the start of the project, the team had an initial broad estimate of

when sections of the project would be completed. The initial estimate was

that model training would be completed by the end of December and mobile

development by the beginning of January, with a minimum viable product

prepared for the beginning of Senior Design 2.

While operating under Agile, the timeline was set up for the first

semester to give time for research, AI development, and mobile

development to occur simultaneously and independently. The Sprint Timeline

shown in Figure 19.3.1 below shows how the timeline was sectioned by Epics

that broadly covered the development time necessary for covering the initial

model and mobile developments. For the AI developments, the dates

between October 18th and November 24th were set in order to find all the

relevant information and utilize it in model development. This then connects

with the Epic for Model Training, which covers from November 4th to

December 12th.

Concurrently, mobile app development was given a longer

development window from October 18th through to the end of December.
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The timeline was structured in this fashion to give the mobile development

team time to set up their environments, design the initial application, and

prepare it for integration with the model.

After the model training, the mobile application continued up until the

first demo, which is when the mobile application was scrapped and the

laptop program was decided to be used. The laptop program was developed

under Mobile App Enhancements and was started on March 26th and

completed April 10th. The website was started on March 26th and completed

on April 10th as well. The database started development on February 1st

and continued development and modification through until April 10th. Live

testing and integration happened through the entirety of Senior Design 2,

starting from January 15th up until April 10th.

Figure 19.3.1: Jira Timeline of Senior Design 1 and 2

Figure 17.3.2 below is the specific milestone chart for the project goals

as they were started and completed.

Task Start Date End Date

Decide on Model

Format

October 18th October 20th

90 Pages of

Documentation

October 18th October 27th
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Initial Mobile App

Creation

October 18th November 8th

Data Collection October 18th November 11th

Data Uploading November 12th November 21st

Initial Model Training November 24th November 27th

180 Pages of

Documentation

October 28th November 29th

Integration and Live

Testing

January 15th April 10th

Database Development February 1st April 10th

Mobile App

Enhancements

January 15th March 26th

Laptop Program

Development

March 26th April 10th

Website / Database

Map

March 26th April 10th

Figure 17.3.2: Milestone Chart with Dates

19.4 DevOps

18.4a Version Control

Version control of the Flutter application is an essential part of efficient

and smooth development. Without version control it would be very difficult
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to produce and manage a working application effectively. The basic idea

behind version control is when developing code, every significant change is

decentralized from the main product and then re-inserted back into the main

product once it is battle tested and working as intended. Every significant

change is tracked and documented which allows anyone on the team to view

the history of changes and roll back the version before any given change as

needed if the system stops working due to new features or additions. While

there technically are multiple different version control systems, there is one

in particular that holds a huge monopoly over the version control service

market and that is Git. Git is a version control system with a wide variety of

command line tools, as well as interface tools but developers who do not

plan on becoming baristas after their academic career choose to use the

command line tools. These command line tools make tracking and

documenting the application’s much more streamline than any other manual

process one may think of.

Before explaining the version control and development pipeline, it is

important to know the different processes and commands of git, why they

work, and what purpose they serve. Here is a list of git commands from the

command line tool that the mobile team will utilize to perform correct agile

development and deployment.

● git init - git init is the command used to initialize a github repository.

This is the first command every developer uses when starting a project

that uses version control.

● git branch - this command will list all of the existing local branches on

the developer’s local machine.

● git branch <branch name> - this command will create a new local

branch on the developer’s local machine. This new branch will branch

off of the current branch that the developer is currently on. This is
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used to create a new environment that the developer will use to add

features to the codebase without tampering with the original branch

during development.

● git checkout <branch name> - This command will switch the code

base from the current branch to a new local branch on the developer’s

local machine.

● git status - this will list all of the untracked and tracked additions or

modifications of the current branch that can be staged for a commit.

● git add <file name> - This command allows for the developer to stage

any file listed in the <file name> section for a commit. The <file

name> section could span anywhere from one file, to a list of files, a

folder, or * for all files.

● git commit -m “<commit message>” - This command is used to

commit all of the files that are staged, with a commit message

relevant to the features added or changed in said commit.

● git pull - This command will update and sync the current local branch

that the developer is working on with the most up to date version of its

paired remote branch.

● git merge <branch name> - This command will merge the branch from

the <branch name> field into the current branch that the developer is

currently checked out into.

● git push - This command will push all of the staged commits from a

local branch onto the remote branch. If this is the developer’s first

time pushing to the remote branch they must use “git branch

–set-upstream origin <branch name>” to set the upstream remote

branch to that local branch.

The version control deployment pipeline the group will use is known as

a Continuous Integration and Continuous Deployment pipeline. Instead of
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explaining how that works, it is more beneficial to discuss the development

and merge process the team will use.

1. The main working product will be on the global Main branch, this

branch will always have the most current working version of the

application.

2. To add a feature, a developer will create a new local branch off of

master and start making edits to adhere to the new feature. This

Feature branch is also known as a Development branch or a Dev

branch.

3. Once edits are made, the developer will test those edits on their dev

branch and make changes accordingly until the dev branch functions

properly.

4. Once the dev branch is tested, the developer will merge their dev

branch into the Alpha branch. The Alpha branch is a branch that is a

collection of every developer’s Dev branch that consists of new

features. Once a developer’s Dev branch is on Alpha, they must test

their new feature again to ensure it works in tandem with every other

developer’s new features as well. The Alpha branch is technically

always ahead of the Main Branch because it has new features but it is

usually unstable. Having an Alpha branch is how the group avoids

running into major bugs on the Main branch, which should be a final

working product.

5. Once the Alpha branch is tested and working properly, it is time to

merge the Alpha branch into the Main branch to update the Main

branch to a newer functioning version of the app.

That is a surface level explanation of the process and why each branch and

step is important to keeping the Main branch at a continuously functioning

state. Below this there will be a diagram of the process just explained, to
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give a visual representation of how the CI/CD pipeline process works. Figure

17.4a.1 below displays the basic overview of creating a new feature branch

from the main branch.

Figure 17.4a.1: Git Feature Branch Pipeline

19.5 Agile Format

The team operated using a custom form of Scrum with twice a week

standups instead of daily standups, time limits of one hour for standups, and

different tasks for each type of standup.

A single sprint would last for 3 weeks and would start and end on

Wednesdays. Every Wednesday at 4:30 PM there would be a full team

standup, where the entire team meets and updates the Jira board for

completed and new tasks. On Saturdays and Sundays, the individual

sub-teams would operate separate standups to update fellow team members

on the current status of work before the next standup. These standups are

looser than the full team stand ups and can be run at different times each

week or run asynchronously. During standup meetings, each team member

updates the project leader on their recent updates and if any stories need to
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be moved. Once all team members have spoken, an action plan for the next

week is made for what everyone will work on for the next week.

Meetings will have meeting notes recorded by one team member

writing meeting minutes at every full team standup. These meeting minutes

will be accessible by all team members and will be used to track

conversation and updates and catch up teammates who missed any

meetings.

Stories will be managed using a standard Kanban board with “Todo”,

“In Progress”, “Review”, and “Done” columns. At the end of every sprint, the

stories in the “Done” column will be deleted and new stories in the backlog

will be moved into Todo as each teammate decides what they will focus on

for the sprint. Each spring will have an overall goal, with the stories created

and assigned relating to the completion of said spring goal.
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Appendix

Permissions

Permission granted from Horizon Vectors by Vecteezy.com for using related

vector art in this document given appropriate accreditation.

Clipground grants permission for using their clipart in personal,

non-commercial uses.

Links

All the repositories for the project can be found at

https://github.com/AI-Pothole-Detection

https://github.com/AI-Pothole-Detection

